臨床報告
術中組織伸展法（IOTE）を用いた歯肉増大術
Gingival Augmentation Using Oral Intra-Operative Tissue Expansion (IOTE) Technique with Implant Placement

渡辺孝夫1) 2)、高橋常男1) 3)
1) 社)日本歯科先端技術研究所（会長：山根進）
2) 厚生歯科（院長：渡辺孝夫）
3) 神奈川歯科大学人体機能学講座（教授：高橋常男）

医学中央雑誌登録No. W3532
臨床報告
術中組織伸展法（IOTE）を用いた歯肉增大術
渡辺孝夫 1 2 、高橋常男 1 3

Gingival Augmentation Using Oral Intra-Operative Tissue Expansion (IOTE) Technique with Implant Placement
Watanabe T. 1 3 , Takahashi T. 1 3

Introduction: In the tissue expansion technique, a balloon is used to expand the tissue. It has been widely used in the field of plastic surgery and maxillofacial surgery to cover defects using the peripheral expanding skin. At the beginning of expansion was carried out over several weeks. In the 1980s, intra-operative tissue expansion technique (IOTE) was developed enabling expansion to be carried out during the operation. In 1992, we reported using the IOTE technique to make an expanded gingival membrane for GBR with tooth extraction and implant placement. The main points of this report are to investigate how much the gingival tissue expanded with IOTE technique in 10 cases. These cases confirmed this was useful and effective to obtain an enough volume of the gingival flap for covering the tooth socket. A case using the modified IOTE technique for retaining the shape of the intertooth papilla because of no-incision at the site of the papilla and to make a concave figure at the labial side of the alveolar ridge is also presented.

Key Words: Intra-operative tissue expansion technique, Implant treatment, Gingival augmentation

1. 論文
組織伸展法は欠損部周辺の歯縁線下に入れたバルーンで数週間かけて徐々に軟組織伸展させ、その伸展した軟組織で欠損部を補うもので、主に形成外科や頭頸部外科の分野で使われている（図 A）。術中伸展法（IOTE）は、組織伸展を術中に行うもので、Sasaki（1985） 3 は 3 分間伸展、2 分減圧を 3 回繰り返し、徐々に伸展する方法を提示した。口腔外科において、われわれは抜歯後即時にインプラント植え込み後の被覆歯肉形成に IOTE 法を応用した（1989年）。今回、これらの症例について本法の有効性を検討した。さらに、抜歯後の歯周組織の再生に対する IOTE 法を応用し、歯肉増大と審美性の回復を計った症例を報告する。

2. 材料および方法
厚生省科（千葉県市川市）で抜歯同時インプラント植え込み後の被覆歯肉形成に IOTE 法を応用した 10 例（平均年齢 45.2 歳、男性 3 名、女性 7 名）を対象とした。手術は 1991 年より 1992 年の 1 年間に行われた。われわれが用いた口腔内 IOTE 法の概要は、図 1 に示したように、抜歯即時にインプラント植え込み後の被覆歯肉形成に IOTE 法を応用した（1992年）。今回は、これらの症例について本法の有効性を検討した。さらに、抜歯後の歯周組織の再生に対する IOTE 法を応用し、歯肉増大と審美性の回復を計った症例を報告する。

図 A：組織伸展法

図 1：口腔内 IOTE 法の概念
図2：術前の口腔内所見。⑥が対象となる歯歯周の一部である。
図3：④部の歯槽粘膜側にバルーンの挿入口を決定し、粘膜骨膜に一次切開を行う。
図4：バルーンによって組織伸張を行う部分の粘膜骨膜を剥離する。
図5：使用するエラスティックバルーン。シリンジから生理食塩水をバルーン内に送り込むことで、骨膜下にあるバルーンを膨らませて組織を伸張させる。
図6：シリンジ内の生理食塩水の量で、組織の伸展量を決定する。生理食塩水はイソジンを薄めて着色している。
図7：組織伸張後に歯肉弁を形成するために二次切開を行う。図は二次切開の切開線。
図8：二次切開が完了した状態。
図9：伸展した組織を遊離させるために、抜歯後周囲の粘膜骨膜を剥離した状態。
図10：粘膜骨膜の伸展状態を確認する。この症例では、歯肉弁は十分に抜歯歯を被覆していた。
図11：インプラント埋入床の形成。
図12：インプラントを埋入した状態。
図13：メンブレント試置している状態。
図14：メンブレントを抜歯歯周囲の骨膜下に挟み込んで固定する。
図15：伸展させた粘膜骨膜弁でメンブレントを覆い、縫合を行う。
図16：組織伸展法による抜歯後即時埋入インプラント一次縫鎖のシェーマ。
3. 結果

頜舌径4mmの抜歯窩欠損に対し、1ccのバーニーン生食水容量を用いた1例は1次閉鎖不成立「NO」、2cc生食水容量を用いた3例は全例1次閉鎖成立「OK」した（図17）。頜舌径6から8mmの抜歯窩欠損に対し、2cc生食水容量を用いた3例では1次閉鎖成立「OK」1例、不成立「NO」2例であった。これに対し、4cc生食水容量を用いた1例では1次閉鎖不成立「NO」であった。垂直径で3mmの増生を要した2症例については、2cc生食水容量を用いた1例は1次閉鎖不成立「NO」、3cc容量を用いた1例では成立「OK」であった。

症例

患者：31歳、男性
初診日：2004年11月23日
主訴：①歯が抜落した。
身長：180cm、やや小柄。
体重：56kg
既往歴：特記事項なし。
全身所見：特記事項なし。
口腔内所見：

衛生状態は良好。歯は全類性残存し、歯肉も健全な状態であった。現在、定期的に口腔内の予防処置を受けている。
現病：

①歯、歯冠は欠損し、残根状態であった。その表面は変色し、軟化していた。歯根および歯根は含まれなかったが、歯根の保存は困難であると思われた。②歯は健全歯、③歯は無痛でインレーが装着されていた（図18）。
現病歴：

①歯は5～6年前、歯根のため抜歯し、焼付陶材冠を装着した。以来、特に問題となることはなかったが、数日前、食事中に突然脱落した。
処置および経過：

2004年12月5日、①歯を抜歯し（図19）、1糸縫合した。2005年1月7日、ミダゾラムおよびプロポフォールによる静脈麻酔および2％キシロカインによる局所麻酔下、④部にIOTE法を応用したインプラント植立を行った。図15は術前の状態。抜歯窩は上皮化していたものの、中央部と歯槽突の縁側部は陥凹していた（図20）。一次切開（図21、22）、骨膜剥離と結膜骨膜弁の伸展（図23～26）、インプラントの埋入（図27～29）、口盖粘膜からの移植片の採取（図30～33）、移植片の挿入と固定、縫合（図34～38）し、手術を終了した。術後3ヶ月、インプラント周囲の歯肉は約1mm、図39、審美的に富んだ歯肉形態を呈していた。アバッメントを装着（図40～43）、次いで周囲ジャケット冠を装着し（図44～46）治療を終了した。
図25：拔歯窩付近の頚側硬膜骨膜弁を伸展拡張させている状態。3分拡張、2分休憩を3回繰り返す。この間、徐々に拡大量を増大させる。

図26：粘膜骨膜弁の伸展が完了した状態。拔歯窩の薄い側に再生上皮は除去した。

図27：再生上皮除去部を通ってインプラント埋入床の形成。

図28：インプラントの挿入。

図29：インプラントを埋入した状態。

図30：口蓋より移植用の結合組織片を取り扱うために切開を実行している状態。

図31：剥離子を用いて部分縁弁で剥離を行う。

図32：結合組織のみを取り扱う。

図33：採取した結合組織片。

図34：採取した結合組織片を伸展した骨膜下に挿入する。

図35：挿入した結合組織片を抜歯窩頸側側の陥凹部に移動させた。

図36：歯齲乳頭下にも、挿入結合組織片を置く。

図37：骨膜下に挿入した結合組織片を固定している状態。

図38：伸展させた粘膜骨膜を牽引しながら最終縫合を行い、一時間顎を完了した。

図39：左が術前の口腔内写真で、右が術後3ヶ月の口腔内写真。インプラント周囲粘膜の陥凹もなくなり、状態も良好である。
4. 考察

抜歯後の歯槽堤の吸収は主に高径の減少および傾斜面からの吸収に現れると言われる。しかし、歯槽堤にインプラントを植立しても装着された上部構造は歯冠部の延長、歯頚部の除去に歯根影がつくれ、審美性を損なうことが考えられる。このような症例に対し歯槽堤増大術およびGBR(骨組織誘導再生術)は歯槽堤を増大し、インプラント植立を可能にするほか、審美性の回復にも有効であるとされている。しかしながら、それらの手術の多くは歯肉弁を形成するため傾斜歯肉を縦切開や、歯肉弁骨膜面に減張切開を入れることが多い。このため、縦切開をいれた部分の歯肉の微細な段差や変形、色調の違いを生じ、これらは審美性を損なう一因となっている。また、縦切開や減張切開を入れることは、歯槽骨を覆う粘膜に寄在する神経線維を損傷する危険性を増大させる。

今回われわれが用いたIOTE法は、抜歯とインプラント植立を同一の手術時に行う処置に、傾斜歯肉歯槽粘膜弁を形成し、一次閉鎖を行ったものである。特徴は、傾斜歯肉歯槽粘膜弁を伸展させるためIOTE法を用い、通常、この目的のために使われる骨部に対する減張切開を避け、神経損傷の危険性を減少させることにある。ただ、この法により一次閉鎖を成立させるだけの歯肉歯槽粘膜弁の伸展が可能か否か、充分な検証がなされていなかった。

本論文の目的は、抜歯後の顎骨径と歯肉増大した垂直径、伸張量の目安となるバランスに入れる生食水最大量および一次閉鎖成立の有無を比較し、IOTE法により一次閉鎖成立が可能か否かを検証することにある。今回得られた結果より、抜歯髄洞径4mm幅の歯槽溝に対して1ccのバルーン注入口食水最大量を用いた1例は一次閉鎖が成立しなかった。これに対して2ccで用いた3例はすべて一次閉鎖が成立した。抜歯髄洞径4mm幅の条件だと、2cc容量を用いれば一次閉鎖は可能であると考えられた。一方、6から8mm幅に対して2cc容量を用いた3例のうち、一次閉鎖成立した症例は1例のみで他の2例は成立しなかった。これに対して、4ccを用いた1例は一次閉鎖が成立した。したがって、6から8mm幅の条件では、少なくとも4cc容量のバルーンを用いれば一次閉鎖は可能であると考えられた。周囲より高径に3mm低下した歯槽堤に対し、3mmの高径増大を目的として本法を用いた症例は2例あった。このうち、1cc容量を用いた1例は一時閉鎖不成立であったが、2cc容量を用いた1例は成
5. 結論
われわれは、拔歯とインプラント植立を同一の手術時に行なう処置で、頸側歯肉縁粘膜弁による一次閉鎖を獲得するための組織拡大に IOTE 法を用いた。今回、同様の処置を行った 10 症例について、IOTE 法により充分な組織拡大が可能か否かを検証した結果、可能であると考えた。


文献
1) 波利井満総編著: Tissue expansion: 最近の進歩。1996、国正社、東京
3) 渡辺孝夫、菅野清史、中尾義、渡戸隆一: ティッシュ・エキスパンダーによる粘膜弁形成法。第 21 回日本口腔インプラント学会総会（35, 1, 118）、1991年7月、岐阜。
6) 渡辺孝夫、渡戸隆一、鴨井久一: ゴアテックス膜による骨形成術-効果的な GTR 法。日本医療文化センター、135-147、1992、東京。