Contents lists available at ScienceDirect # Bone journal homepage: www.elsevier.com/locate/bone # Transcriptome analysis of β-TCP implanted in dog mandible J. Zhao ^a, T. Watanabe ^b, U.K. Bhawal ^c, E. Kubota ^d, Y. Abiko ^{a,*} - Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, 2-870-1, Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan - b Department of Anatomy, Kanagawa Dental College Yokosuka 238-8580, Japan C Research Institute of Occlusion Medicine & Open Research Center, Kanagawa Dental Collage Yokosuka 238-8580, Japan - d Department of Oral and Maxillofacial Surgery and High-Tech Research Center, Kanagawa Dental College Yokosuka 238-8580, Japan ### ARTICLE INFO Article history: Received 21 June 2010 Revised 20 October 2010 Accepted 27 November 2010 Available online 4 December 2010 Edited by: M. Noda Keywords: Bone remodeling Gene expression Signaling pathway Dog mandible #### ABSTRACT Beta-tricalcium phosphate (β-TCP) is widely used in clinical orthopedic surgery due to its high biodegradability, osteoconductivity, easy manipulation and lack of histotoxicity. However, little is known about the molecular mechanisms responsible for the beneficial effects of β -TCP in bone formation. In this study, β -TCP was implanted in dog mandibles, after which the gene expression profiles and signaling pathways were monitored using microarray and Ingenuity Pathways Analysis (IPA). Following the extraction of premolars and subsequent bone healing, β -TCP was implanted into the artificial osseous defect. Histological evaluation (H-E staining) was carried out 4, 7 and 14 days after implantation. In addition, total RNA was isolated from bone tissues and gene expression profiles were examined using microarray analysis coupled with Ingenuity Pathways Analysis (IPA). Finally, real-time PCR was used to confirm mRNA levels. It was found that β -TCP implantation led to a two-fold change in 3409 genes on day 4, 3956 genes on day 7, and 6899 genes on day 14. Among them, the expression of collagen type I $\alpha 1$ (COL1A1), alkaline phosphatase (ALP) and transforming growth factor (TGF)-\(\beta\)2 was increased on day 4, the expression of receptor activator of NF-kappaB ligand (RANKL) and interferon- γ (IFN- γ) was decreased on day 7, and the expression of osteoprotegerin (OPG) was decreased on day 14, affecting the bone morphogenetic protein (BMP), Wnt/β-catenin and nuclear factor-kappaB (NF-κB) signaling pathways in osteoblasts and osteoclasts. Simultaneously, vascular cell adhension molecule (VCAM)-1 expression was increased on day 4 and stromal cell-derived factor (SDF)-1 expression was increased on days 4 and 14. Taken together, these findings shed light on some of the cellular events associated with bone formation, bioresorption, regeneration and healing of β-TCP following its implantation. The results suggest that β-TCP enhances bone healing processes and stimulates the coordinated actions of osteoblasts and osteoclasts, leading to bone regeneration. © 2010 Elsevier Inc. All rights reserved. #### Introduction The repair of bone fractures or defects, as well as the filling of voids after bone tumor resection, is achieved through the local formation of new bone. This is often through autogenous cancellous bone grafting, though two difficulties make this procedure less than optimal. First, additional surgery is required to harvest the bone graft, which often leads to postoperative functional or cosmetic morbidities at the donor site. Second, there is usually only a limited amount of donor mass available, which may not have sufficient mechanical strength for its desired purpose [1]. To address these issues, the use of biomaterials in bone and joint surgery has received considerable attention in recent years. Among the biodegradable and osteoconductive biomaterials currently being used, beta-tricalcium phosphate (β-TCP) is the most popular. The β-TCP scaffold contains interconnected pores which facilitate the infiltration of osteogenic cells, and this material is strong enough to maintain the implant's shape during bone formation [2]. Moreover, β-TCP is resorbed and replaced by host bone within 24 weeks with no apparent adverse effects [3]. Horch et al. described the favourable solubility and biocompatibility of β-TCP, as evidenced by the almost complete bony regeneration after 12 months without foreign body reactions. They also reported that filling defects with β-TCP stabilized the blood clot within the defect, thereby facilitating bone regeneration [4]. In addition, histological and histomorphometric comparison in the same patients revealed that there was no significant difference between β -TCP and autogenous bone grafts in terms of the quantity and rate of ossification [4-6]. On the other hand, very little is known about the molecular basis for the bone formation mediated by β-TCP. Tissue responses to implanted biomaterial are complex and multifaceted; consequently, important information can be lost when the responses are examined in a reductionist fashion-i.e., one gene at a time. An alternative approach is to examine the response of the system as a ^{*} Corresponding author. Postal address: Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, 2-870-1, Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan. Tel.: +81 047 360 9328; fax: +81 047 360 9329. E-mail address: abiko.yoshimitsu@nihon-u.ac.jp (Y. Abiko). whole, and microarray analysis has emerged as a useful tool with which to collectively interrogate numerous signaling pathways and biological processes. In addition, to facilitate the analysis of microarray data, and to relate the up- and down-regulation of gene expression to underlying biological processes, various groups have proposed using in silico genomics network analysis, a variant of which is Ingenuity Pathways Analysis (IPA) (Ingenuity® systems, www.Ingenuity.com) [7–12]. This is the first report to use microarray and IPA technology to profile the molecular mechanisms after the implantation of β -TCP at an early stage. The goal of the present study was to use microarray and IPA to investigate the relevant molecular networks and functions involved in the response to β -TCP implants, which may be a useful first step towards developing gene therapies for bone implantation. ## Materials and methods Implantation of β -TCP Beagle dogs (9 years old; body weight 13 ± 2 kg; total of 9 dogs) were purchased from Japan SLC (Shizuoka, Japan). The dogs were allowed free access to food and water *ad libitum* at all times and were maintained on a 12 h light/dark cycle (lights on 8:00 to 20:00) in a 23 ± 1 °C, humidity $60\pm10\%$ environment for a period of 1 month before use. All beagle dogs were maintained and used in accordance with the guidelines of the care and use of Laboratory Animals of Kanagawa Dental College. The dogs were randomly divided into two material groups: a β -TCP group (β -TCP-100, >99% pure, Taihei Chemicals Limited, Japan) and a no-implant control group. The left and right mandibles of the beagle dogs were divided randomly into three time groups according to the presumptive time when they would be sacrificed, with a total of six samples in each time group for each material group, three out of the six samples were used for RNA analysis and the remaining three samples were used for histological analysis. All beagle dogs were initially subjected to premolar $({}_2P_2, {}_3P_3)$ extraction with sodium pentobarbital (Somnopentyl®, Kyoritsu Seiyaku, Tokyo, Japan) at a dose of 35 mg/kg. Then, after about 3 months when bone had healed, artificial mandibular bone defects (4.5 mm diameter, 8 mm length) were made in the mandible of each dog using an implant drill with physiological saline cooling under anaesthesia at the sites of the tooth extractions. The implant materials were randomly filled into the left or right mandible defects. After surgery, each beagle dog received an intramuscular injection of sodium ampicillin (Viccillin®, Meiji, Tokyo, Japan) at a dose of 100 mg/kg, and was then returned to its cage and allowed to move freely. All wounds gradually healed and the beagle dogs were active with no complications after surgery. ## Histological analysis The dogs were sacrificed under anaesthesia by cardiac perfusion with physiological saline and 10% neutral formalin buffer solution (pH 7.4, Wako, Tokyo, Japan) 4, 7 or 14 days after β -TCP implantation. Cylindrical specimens (4.5 mm diameter, 8 mm length) were collected and fixed in 10% formalin for 48 h, decalcified in 10% EDTA (0.1 M phosphate buffer, pH 7.4) for 4 weeks, embedded in paraffin, and cut into 5 μ m-thick sections. The sections were stained with hematoxylin and eosin (H–E), photographed and evaluated under a light microscope. #### RNA extraction For the extraction of total RNA, bone biopsies were incubated in RNA Stabilization Solution (RNAlater, Applied Biosystems, Ambion), after which total RNA was extracted from each bone biopsy using an RNeasy Fibrous Tissue Mini Kit Isolation System (Qiagen Ltd.), according to the manufacturer's protocol. Microarray analysis Three RNA samples of each time point were mixed together for gene expression profiling. Gene expression profiling was performed separately for each pooled RNA sample using a GeneChip® Canine Genome 2.0 Array (Affymetrix). Details of the probe set can be obtained at http://www.affymetrix.com/products_services/arrays/ index.affx. The protocol for microarray processing was carried out according to the GeneChip® 3' IVT express Kit user manual. The expression of 38,000 genes was monitored, and the data was imported into GeneSpring GX software (Agilent Technologies, Inc Santa Clara, CA) for the selection of induced and repressed genes. Values below 0.01 were set to 0.01. Each measurement was divided by the 50th
percentile of all measurements in the sample. Expression levels in the β -TCP samples at each time point were normalized to the median of the corresponding control sample. The Affymetrix software categorized the gene expression as absent (gene intensity below an Affymetrix-calculated threshold), present or marginal. Genes with an expression up- or down-regulated by at least two-fold were used for further analysis with IPA. The microarray data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE24756. Ingenuity Pathways Analysis (IPA) Ingenuity Pathways Analysis version 4.0 (Ingenuity Systems, Mountain View, CA, USA) was used to search for possible biological processes, pathways and networks. This web-based entry tool allows the mapping of gene expression data into relevant pathways based on the gene's functional annotation and known molecular interactions [13–15]. This information, which comes from published, peer-reviewed scientific publications, is stored in the Ingenuity Knowledge Base (IKB), which is continuously updated. A molecular network of direct or indirect physical, transcriptional and enzymatic interactions between mammalian orthologs was computed from this knowledge base. By comparing the imported microarray data with the IKB, the list of genes was transformed into a set of relevant networks, focus genes and canonical pathways, and functionally annotated [7]. A detailed description of IPA can be found at www.Ingenuity.com. The genes identified by using GeneSpring software were used for network analysis. The gene products were categorized based on location, cellular components, and reported or suggested biochemical, biological, and molecular functions. Genetic networks available in the IKB were also mapped based on a ranking by score which reflected the probability that a collection of genes equal to or greater than the number in a given network could have been expressed by chance alone. Canonical pathway analysis revealed molecular pathways in the IPA library of canonical pathways (part of the IKB) that were the most significant for the data set. Genes from the data set that were associated with a canonical pathway in the IKB were considered for the analysis. Reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time PCR analysis Reverse transcription was performed using a GeneAmp RNA PCR Kit (Applied Biosystems, Foster City, CA, USA) with samples of total RNA. To quantify the mRNA, real-time PCR was performed using an SYBR Premix Ex Taq™ (Perfect Real-Time PCR, Takara, Japan) and the appropriate primer sets. The primers and annealing temperatures for the genes studied are shown in Table 7. Levels of each mRNA were normalized to the levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA. To assess the size of the PCR products, they were electrophoresed on 1.5% agarose gel and then stained with ethidium bromide. Real-time PCR was performed using a real-time DNA thermal analyzer (Rotor-Gene 6000; Corbett Life Science, Sydney, Australia) with SYBR Premix Ex Taq (Perfect Real-Time PCR, Takara, Japan). The mRNA copy unit was given by the cycle threshold (CT) value from the fluorescent signals from all of the samples, including the standard curve and target genes, following the method provided by Corbett Life Science Company through Rotor-Gene 6000 software. The details are described in the operation manual version 1.7.40, 2006. #### Statistical analysis All data are expressed as means \pm SD. Statistical analysis was performed using the Student's t test. Values of p<0.05 were considered significant. #### Results Histological analysis (H-E staining) Fig. 1 shows photomicrographs of H–E-stained cross sections through the bone samples collected from dogs in the control and β -TCP groups 4, 7 or 14 days after surgery. In the samples collected from the β -TCP group on day 4 after implantation, the bone hole contained numerous fibroblasts and small numbers of inflammatory cells and capillary lymphocytes. By day 7, the bone hole was filled with new bone and fibrous connective tissue, and by day 14 the hole was filled with regenerated bone. In the control group, by contrast, the bone hole was occupied by inflammatory connective tissue on day 4. On day 7, new bone was limited to the area surrounding the lesion, and on day 14 a small amount of new bone was observed in the hole itself. Analysis of differences in gene expression in the control and β -TCP groups Preliminary analysis in which a two-fold or greater change in gene expression was considered significantly revealed that, as compared to the untreated controls, 2130 genes were up-regulated and 1279 were down-regulated in the β -TCP group on day 4 after implantation, 2020 were up-regulated and 1936 down-regulated on day 7, and 1515 were up-regulated and 5384 were down-regulated on day 14. When the differentially expressed genes were mapped using hierarchical clustering analysis (Fig. 2) and gene ontology (GO) terms (Table 1), we found that the gene expression profiles were similar on days 4 and 7, but that the profile on day 14 differed greatly from the other two, reflecting the presence of osteoblasts involved in the construction of new bone tissue and osteoclasts involved in the bioresorption of β -TCP. We next carried out functional annotations of the differentially expressed genes using GO terms, after which the most significantly enriched GO terms were used as a guide to manually assemble a functional classification of the differentially expressed genes, grouping together terms with similar biological functions. The top 20 GO Fig. 1. Photomicrographs (H–E stain, 200×) of mandible specimens collected from dogs in the control and β -TCP groups 4, 7 and 14 days after β -TCP implantation. Scale bar: 100 μ m. Fig. 2. Hierarchical clustering analysis of gene expression derived from a GeneChip Canine Genome 2.0 Array. The gene expression values in the β -TCP group are represented using a default color scheme and are shown relative to control. Red indicates increased expression, blue indicates reduced expression, and yellow indicates no difference in expression. a: Gene expression was down-regulated on day 4 but up-regulated on days 7 and 14. b: Median expression of genes was reduced on day 7, but was increased on day 14. c: Gene expression was up-regulated on day 4 but down-regulated on days 7 and 14. d: Median expression of genes was increased on day 7, but was decreased on day 14. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) terms at each time point are shown in Table 1. On day 4, acute-phase response, regulation of mitogen-activated protein kinase (MAPK) activity, cell communication, and regulation of cell proliferation were highly significant, which suggests the bone tissue underwent an acute-phase response and primary tissue repair after surgery. On days 7 and 14, cell differentiation, skeletal development, biomineral formation, ossification, regulation of bone mineralization, and bone remodeling were highly significant. We also analyzed the up- and down-regulated genes that were classified as being involved in biological processes, including cell proliferation and adhesion, cell death and apoptosis, cytokine and growth factor activity, signal transduction, proteolysis, inflammatory and immune responses, and response to stress (Table 2). Table 2 shows that vascular cell adhesion molecule 1 (VCAM-1) was up-regulated on day 4, whereas stromal cell- derived factor 1 (SDF-1; CXCL12) was up-regulated on days 4 and 14. We also found that collagen type I α I (COL1A1) expression was up-regulated at all three time points, while the expression of interferon- γ (IFN- γ) and granulocyte macrophage-colony stimulating factor (GM-CSF) was down-regulated on day 7, although IFN- γ was up-regulated on day 14. Network analysis and canonical pathway analysis Using IPA, we identified 170 networks active at one or more of the three time points studied. These networks were involved in wide variety of physiological and pathophysiological processes, including hematological disease, organismal injury and abnormalities, cancer, RNA post-transcriptional modification, molecular transport, **Table 1**Top 20 gene ontology of up- and down-regulated at 3 time points. | Biological process | p-Value | Gen | |--|--------------------|-------| | Top 20 gene ontology of up-regulated on day 4 | | | | cGMP biosynthesis | 0.0018 | 3 | | cGMP metabolism | 0.0018 | 3 | | Sterol biosynthesis | 0.00341 | 2 | | Cholesterol biosynthesis | 0.00341 | 2 | | Cyclic nucleotide biosynthesis | 0.00528 | 4 | | Cyclic nucleotide metabolism | 0.00528 | 4 | | Acute-phase response | 0.0092 | 4 | | Regulation of MAPK activity | 0.0127 | 3 | | Cell communication | 0.0134 | 35 | | Wnt receptor signaling pathway | 0.0174 | 3 | | Steroid biosynthesis | 0.0189 | 2 | | nduction of apoptosis by intracellular signals | 0.0189 | 2 | | Regulation of cell proliferation | 0.0239 | 7 | | Nucleotide biosynthesis | 0.0241 | 5 | | Positive regulation of cell proliferation | 0.0241 | 5 | | Protein amino acid phosphorylation | 0.0282 | 11 | | Regulation of protein kinase activity | 0.0292 | 3 | | Regulation of nucleocytoplasmic transport | 0.0303 | 2 | | Regulation of protein import into nucleus | 0.0303 | 2 | | Regulation of protein transport | 0.0303 | 2 | | Fop 20 gene ontology of down-regulated on day 4 | | | | ron ion transport | 0.0000346 | 7 | | mmune response | 0.000061 | 24 | | Response to biotic stimulus | 0.0000741 | 26 | | Defense response | 0.0000741 | 26 | | Fever | 0.000371 | 3 | | Fransition metal ion transport | 0.000433 | 7 | | Organismal physiological process | 0.000689 | 35 | | Response to
external stimulus | 0.00161 | 17 | | Response to stimulus | 0.00246 | 35 | | Positive regulation of apoptosis | 0.00362 | 6 | | Positive regulation of programmed cell death | 0.00362 | 6 | | ron ion homeostasis | 0.00418 | 5 | | Insulin receptor signaling pathway | 0.0052 | 2 | | Regulation of insulin receptor signaling pathway | 0.0052 | 2 | | Negative regulation of insulin receptor signaling pathway | 0.0052 | 2 | | Chemokine biosynthesis | 0.0063 | 3 | | Chemokine metabolism | 0.0063 | 3 | | Thermoregulation | 0.0063 | 3 | | Heat generation | 0.0063 | 3 | | Taxis | 0.0064 | 7 | | For 20 sons ontology of un regulated on day 7 | | | | Top 20 gene ontology of up-regulated on day 7 Tissue development | 0.000468 | 6 | | | 0.00102 | 6 | | Skeletal development | | 3 | | Sone mineralization | 0.00124 | 13 | | Cell differentiation | 0.00148 | 2 | | Cartilage condensation | 0.00265
0.00277 | 5 | | Calcium ion transport | 0.00277 | 2 | | Motor axon guidance | | 3 | | Biomineral formation | 0.0124
0.0124 | - | | Ossification After recentor signaling pathway | | 3 | | Vnt receptor signaling pathway | 0.0124 | | | Regulation of bone mineralization | 0.0149 | 2 | | Bone remodeling | 0.0164 | 3 | | Di-, tri-valent inorganic cation transport | 0.0168 | 6 | | Cell communication | 0.0186 | 31 | | Cell adhesion | 0.0227 | 9 | | Regulation of ossification | 0.0239 | 2 | | artilage development | 0.0239 | 2 | | Calcium ion homeostasis | 0.0323 | 3 | | indocytosis | 0.0323
0.0347 | 3 | | Regulation of bone remodeling | 0.0347 | 2 | | op 20 gene ontology of down-regulated on day 7 | | | | mmune cell chemotaxis | 0.000338 | 4 | | Neutrophil chemotaxis | 0.000536 | 4 | | Carbohydrate metabolism | 0.000629 | 16 | | Alcohol metabolism | 0.00156 | 13 | | Macromolecule catabolism | 0.00156 | 10 | | Cellular macromolecule catabolism | 0.00177 | 10 | | `all cuclo | 0.00205 | 11 | | len cycle | | 9,000 | | Cell cycle
Lipid metabolism | 0.00207 | 11 | Table 1 (continued) | Top 20 gene ontology of down-regulated on day 7 Peptidoglycan metabolism | Biological process | p-Value | Gene | |--|--|-------------|-------| | Decimotory behavior Decimotory Decimot | Top 20 gene ontology of down-regulated on day 7 | | | | Decomotory behavior Decomotory behavior Decomotory | | 0.00254 | 4 | | Cellular lipid metabolism | | 0.00273 | 10 | | Cellular carbohydrate metabolism Cellular carbohydrate metabolism Regulation of progression through cell cycle Co.00377 9 | Behavior | 0.00309 | 11 | | Regulation of progression through cell cycle 0.00377 9 Cell cycle arrest 0.00511 4 Positive regulation of bone mineralization 0.00511 2 Positive regulation of sosification 0.00511 2 T cell selection 0.00511 2 Negative regulation of muscle contraction 0.000338 2 Top 20 gene ontology of up-regulated on day 14 Biomineral formation 0.00312 3 Ossification 0.00312 3 Bone remodeling 0.00419 3 Gas transport 0.00572 2 Oxygen transport 0.00572 2 Skeletal development 0.00605 4 Gametogenesis 0.0188 2 Tissue development 0.027 3 Sexual reproduction 0.031 2 Peptidoglycan metabolism 0.031 2 Regulation of myelination 0.0318 1 Negative regulation of interleukin-12 biosynthesis 0.0318 1 Prositive regulation of interleukin-12 biosynthesis | Cellular lipid metabolism | 0.00311 | 9 | | Cell cycle arrest | Cellular carbohydrate metabolism | 0.00363 | 13 | | Cell cycle arrest Positive regulation of bone mineralization Positive regulation of ossification T cell selection Negative regulation of muscle contraction Top 20 gene ontology of up-regulated on day 14 Biomineral formation Ossification Ossification Ossification Ossification Ossification Ossification Osorr Osorr Osorr Osorr Osorr Oxygen transport Oxygen transport Oxygen transport Oxygen transport Osewal evelopment Osewal evelopment Osewal evelopment Osewal evelopment Osewal evelopment Osewal evelopment Osewal reproduction Osorr Osewal reproduction Osorr Osorr Osygen transport Oswal evelopment Osewal reproduction Osorr Osorr Osygen transport Osorr Osor | | 0.00377 | 9 | | Positive regulation of bone mineralization Positive regulation of ossification T cell selection Negative regulation of muscle contraction Top 20 gene ontology of up-regulated on day 14 Biomineral formation Ossification Ossifi | | 0.00511 | 4 | | Positive regulation of ossification Co.00511 Co.0 | | 0.00511 | 2 | | T cell selection | | 0.00511 | 2 | | Negative regulation of muscle contraction 0.000338 2 | | 0.00511 | 2 | | Biomineral formation | | 0.000338 | 2 | | Biomineral formation | Ton 20 gene ontology of un-regulated on day 14 | | | | Ossification 0.00312 3 Bone remodeling 0.00419 3 Gas transport 0.00572 2 Oxygen transport 0.00572 2 Skeletal development 0.00605 4 Gametogenesis 0.0188 2 Tissue development 0.027 3 Sexual reproduction 0.031 2 Peptidoglycan metabolism 0.031 2 Regulation of myelination 0.0318 1 Negative regulation of myelination 0.0318 1 Positive regulation of interleukin-12 biosynthesis 0.0318 1 Programmed cell death, inflammatory cells 0.0318 1 Programmed cell death, inflammatory cells 0.0318 1 Induction of apoptosis 0.0318 1 Induction of apoptosis by oxidative stress 0.0318 1 Positive regulation of cytokine secretion 0.0318 1 Positive regulation of interleukin-1 secretion 0.0318 1 Positive regulation of interleukin-1 secretion 0.0318 1 | | 0.00312 | 3 | | Bone remodeling | | | _ | | Cas transport | | | _ | | Oxygen transport | | | - | | Skeletal development | | | - | | Gametogenesis | | | 0.00 | | Tissue development 0.027 3 Sexual reproduction 0.031 2 Peptidoglycan metabolism 0.031 2 Regulation of myelination 0.0318 1 Positive regulation of interleukin-12 biosynthesis 0.0318 1 Programmed cell death, inflammatory cells 0.0318 1 DNA damage response, signal transduction resulting in induction of apoptosis Induction of apoptosis by oxidative stress 0.0318 1 Positive regulation of cytokine secretion 0.0318 1 Positive regulation of
interleukin-1 secretion 0.0318 1 Positive regulation of interleukin-1 beta secretion 0.0318 1 Positive regulation of interleukin-1 beta secretion 0.0318 1 Regulation of cytokine secretion 0.0318 1 Positive regulation of interleukin-1 beta secretion 0.0318 1 Regulation of cytokine secretion 0.0318 1 Regulation of cytokine secretion 0.0318 1 Regulation of cytokine secretion 0.0318 1 Inmune response 0.00000582 28 Iron ion transport 0.000000582 28 Iron ion transport 0.00000154 28 Iron ion transport 0.000000596 44 Defense response 0.0000596 44 Transition 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000385 13 Chemotaxis 0.000385 13 Chemotaxis 0.000385 13 Chemotaxis 0.000407 5 Chemokine metabolism 0.000407 5 Neutrophil chemotaxis 0.000407 5 Neutrophil chemotaxis 0.000502 24 Dopamine metabolism 0.000518 4 | The state of s | | | | Sexual reproduction 0.031 2 Peptidoglycan metabolism 0.031 2 Regulation of myelination 0.0318 1 Negative regulation of myelination 0.0318 1 Positive regulation of interleukin-12 biosynthesis 0.0318 1 DNA damage response, signal transduction resulting in induction of apoptosis Induction of apoptosis Induction of apoptosis by oxidative stress 0.0318 1 Positive regulation of cytokine secretion 0.0318 1 Positive regulation of interleukin-1 secretion 0.0318 1 Positive regulation of interleukin-1 secretion 0.0318 1 Positive regulation of interleukin-1 beta secretion 0.0318 1 Regulation of cytokine secretion 0.0318 1 Protein transport 0.0318 1 Frop 20 gene ontology of down-regulated on day 14 Protein transport 0.000000582 28 Immune response 0.00000123 44 Protein localization 0.000000582 28 Iron ion transport 0.000000582 28 Iron ion transport 0.000000584 49 Iron ion transport 0.00000596 44 Small GTPase mediated signal transduction 0.0000716 17 Regulation of cell adhesion 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000385 13 Chemotaxis 0.000385 13 Chemotaxis 0.000407 5 Chemokine metabolism 0.000407 5 Neutrophil chemotaxis 0.000502 24 Dopamine metabolism 0.000518 4 | | | _ | | Regulation of myelination 0.031 2 | - Constant Conf Conf. | | _ | | Regulation of myelination 0.0318 1 Negative regulation of interleukin-12 biosynthesis 0.0318 1 Positive regulation of interleukin-12 biosynthesis 0.0318 1 Programmed cell death, inflammatory cells 0.0318 1 DNA damage response, signal transduction resulting in induction of apoptosis 0.0318 1 Induction of apoptosis by oxidative stress 0.0318 1 Positive regulation of cytokine secretion 0.0318 1 Positive regulation of interleukin-1 secretion 0.0318 1 Positive regulation of interleukin-1 beta secretion 0.0318 1 Regulation of cytokine secretion 0.0318 1 Top 20 gene ontology of down-regulated on day 14 1 Protein transport 0.00000124 28 Establishment of protein localization 0.00000123 44 Protein localization 0.00000123 44 Iron ion transport 0.00000154 28 Iron ion transport 0.0000596 44 Defense response 0.0000596 44 Small GTPase mediated signal tr | | | - | | Negative regulation of myelination Positive regulation of interleukin-12 biosynthesis Programmed cell death, inflammatory cells DNA damage response, signal transduction resulting in induction of apoptosis Induction of apoptosis by oxidative stress Induction of apoptosis by oxidative stress Positive regulation of cytokine secretion Positive regulation of interleukin-1 secretion O.0318 Positive regulation of interleukin-1 secretion Positive regulation of interleukin-1 beta secretion Regulation of cytokine secretion O.0318 Top 20 gene ontology of down-regulated on day 14 Protein transport Establishment of protein localization Immune response O.00000123 Protein localization O.00000154 Protein localization O.0000089 Iron ion transport O.0000089 Iron ion transport O.0000096 Response to biotic stimulus O.0000596 Asmall GTPase mediated signal transduction O.0000716 Regulation of cell adhesion O.000326 Protein targeting O.000359 Taxis Chemotaxis Transition metal ion transport O.000407 Chemokine metabolism O.000407 Seponse to pest, pathogen or parasite O.000502 Dopamine metabolism O.000502 Dopamine metabolism O.000518 A | | | | | Positive regulation of interleukin-12 biosynthesis 0.0318 1 Programmed cell death, inflammatory cells 0.0318 1 DNA damage response, signal transduction resulting in induction of apoptosis 0.0318 1 Induction of apoptosis by oxidative stress 0.0318 1 Positive regulation of cytokine secretion 0.0318 1 Positive regulation of interleukin-1 secretion 0.0318 1 Positive regulation of interleukin-1 beta secretion 0.0318 1 Regulation of cytokine secretion 0.0318 1 Top 20 gene ontology of down-regulated on day 14 1 Protein transport 0.000000582 28 Immune response 0.00000582 28 Immune response 0.00000123 44 Protein localization 0.00000596 42 Iron ion transport 0.00000596 44 Defense response 0.0000596 44 Small GTPase mediated signal transduction 0.0000766 17 Regulation of cell adhesion 0.000326 7 Protein targeting 0.000359 | | | | | Programmed cell death, inflammatory cells 0.0318 1 DNA damage response, signal transduction resulting in induction of apoptosis 0.0318 1 Induction of apoptosis by oxidative stress 0.0318 1 Positive regulation of cytokine secretion 0.0318 1 Positive regulation of interleukin-1 secretion 0.0318 1 Positive regulation of interleukin-1 beta secretion 0.0318 1 Regulation of cytokine secretion 0.0318 1 Top 20 gene ontology of down-regulated on day 14 1 Protein transport 0.000000582 28 Immune response 0.00000123 44 Protein localization 0.00000582 28 Iron ion transport 0.00000596 44 Iron ion transport 0.0000596 44 Small GTPase mediated signal transduction 0.0000796 44 Small GTPase mediated signal transduction 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000359 12 Taxis 0.000385 13 | | | | | DNA damage response, signal transduction resulting in induction of apoptosis 0.0318 1 Induction of apoptosis by oxidative stress 0.0318 1 Positive regulation of cytokine secretion 0.0318 1 Positive regulation of interleukin-1 secretion 0.0318 1 Positive regulation of interleukin-1 beta secretion 0.0318 1 Regulation of cytokine secretion 0.0318 1 Top 20 gene ontology of down-regulated on day 14 1 Protein transport 0.000000122 28 Establishment of protein localization 0.000000582 28 Immune response 0.00000123 44 Protein localization 0.00000154 28 Iron ion transport 0.00000596 44 Defense response 0.0000596 44 Small GTPase mediated signal transduction 0.0000716 17 Regulation of cell adhesion 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000359 12 Taxis 0.000359 12 Taxis </td <td></td> <td></td> <td></td> | | | | | in induction of apoptosis Induction of apoptosis by oxidative stress Induction of oxidative stress Induction of oxidative stress Induction of interleukin-1 beta secretion Induction of oxidative regulation of interleukin-1 beta secretion Induction of oxidative secretion Induction of oxidative secretion Induction | | | | | Induction of apoptosis by oxidative stress 0.0318 1 Positive regulation of cytokine secretion 0.0318 1 Positive regulation of interleukin-1 secretion 0.0318 1 Positive regulation of interleukin-1 beta secretion 0.0318 1 Regulation of cytokine secretion 0.0318 1 Regulation of cytokine secretion 0.0318 1 Top 20 gene ontology of down-regulated on day 14 Protein transport 0.000000582 28 Immune response 0.00000123 44 Protein localization 0.00000154 28 Iron ion transport 0.0000089 10 Response to biotic stimulus 0.0000596 44 Small GTPase mediated signal transduction 0.0000716 17 Regulation of cell adhesion 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000385 13 Transition metal ion transport 0.000407 5 Chemokine metabolism 0.000407 5 Chemokine metabolism 0.000407 5 Neutrophil chemotaxis 0.000502 24 Dopamine metabolism 0.000518 4 | | 0.0318 | 1 | | Positive regulation of cytokine secretion 0.0318 1 Positive regulation of interleukin-1 secretion 0.0318 1 Positive regulation of interleukin-1 beta secretion 0.0318 1 Regulation of cytokine secretion 0.0318 1 Top 20 gene ontology of down-regulated on day 14 1 Protein transport 0.000000582 28 Establishment of protein localization 0.000000582 28 Immune response 0.00000123 44 Protein localization 0.00000154 28 Iron ion transport 0.0000809 10 Response to biotic stimulus 0.0000596 44 Defense response 0.0000596 44 Small GTPase mediated signal transduction 0.0000716 17 Regulation of cell adhesion 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000385 13 Transition metal ion transport 0.000385 13 Transition metal ion transport 0.000407 5 Chemokine metabolism | | 0.0318 | 1 | | Positive regulation of interleukin-1 secretion 0.0318 1 Positive regulation of interleukin-1 beta secretion 0.0318 1 Regulation of cytokine secretion 0.0318 1 Top 20 gene ontology of down-regulated on day 14 1 Protein transport 0.000000582 28 Establishment of protein localization 0.00000123 44 Protein localization 0.00000154 28 Iron ion transport 0.00000899 10 Response to biotic stimulus 0.0000596 44 Defense response 0.0000596 44 Small GTPase mediated signal transduction 0.0000716 17 Regulation of cell adhesion 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000385 13 Chemotaxis 0.000385 13 Transition metal ion transport 0.000406 10 Chemokine biosynthesis 0.000407 5 Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 | | | | | Positive regulation of interleukin-1 beta secretion 0.0318 1 Regulation of cytokine secretion 0.0318 1 Top 20 gene ontology of down-regulated on day 14 0.000000142 28 Protein transport 0.000000582 28 Immune response 0.00000123 44 Protein localization 0.00000154 28 Iron ion transport 0.00000809 10 Response to biotic stimulus 0.0000596 44 Defense response 0.0000596 44 Small GTPase mediated signal transduction 0.0000326 7 Regulation of cell adhesion 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000385 13 Chemotaxis 0.000385 13 Transition metal ion transport 0.000406 10 Chemokine biosynthesis 0.000407 5 Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24
<td></td> <td></td> <td></td> | | | | | Regulation of cytokine secretion 0.0318 1 Top 20 gene ontology of down-regulated on day 14 0.000000142 28 Establishment of protein localization 0.000000582 28 Immune response 0.00000123 44 Protein localization 0.00000809 10 Response to biotic stimulus 0.0000596 44 Defense response 0.0000596 44 Small GTPase mediated signal transduction 0.0000716 17 Regulation of cell adhesion 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000385 13 Chemotaxis 0.000385 13 Transition metal ion transport 0.000406 10 Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | | | | | Protein transport 0.000000142 28 Establishment of protein localization 0.000000582 28 Immune response 0.00000123 44 Protein localization 0.00000154 28 Iron ion transport 0.00000809 10 Response to biotic stimulus 0.0000596 44 Defense response 0.0000596 44 Small GTPase mediated signal transduction 0.0000716 17 Regulation of cell adhesion 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000385 13 Chemotaxis 0.000385 13 Transition metal ion transport 0.000406 10 Chemokine biosynthesis 0.000407 5 Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | | | | | Protein transport 0.000000142 28 Establishment of protein localization 0.000000582 28 Immune response 0.00000123 44 Protein localization 0.00000154 28 Iron ion transport 0.00000809 10 Response to biotic stimulus 0.0000596 44 Defense response 0.0000596 44 Small GTPase mediated signal transduction 0.0000716 17 Regulation of cell adhesion 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000385 13 Chemotaxis 0.000385 13 Transition metal ion transport 0.000406 10 Chemokine biosynthesis 0.000407 5 Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | To 20 and other of days and the 14 | | | | Establishment of protein localization 0.000000582 28 Immune response 0.00000123 44 Protein localization 0.0000089 10 Iron ion transport 0.00000899 10 Response to biotic stimulus 0.0000596 44 Defense response 0.0000596 44 Small GTPase mediated signal transduction 0.000376 17 Regulation of cell adhesion 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000385 13 Chemotaxis 0.000385 13 Transition metal ion transport 0.000385 13 Transition metal ion transport 0.000406 10 Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 Neutrophil chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | | 0.000000143 | 20 | | Immune response 0.00000123 44 | | | | | Protein localization 0.00000154 28 Iron ion transport 0.0000809 10 Response to biotic stimulus 0.0000596 44 Defense response 0.0000596 44 Small GTPase mediated signal transduction 0.0000716 17 Regulation of cell adhesion 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000385 13 Chemotaxis 0.000385 13 Transition metal ion transport 0.000406 10 Chemokine biosynthesis 0.000407 5 Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | Secretary of Contract | | | | Iron ion transport 0.0000809 10 | | | | | Response to biotic stimulus 0.0000596 44 Defense response 0.0000596 44 Small GTPase mediated signal transduction 0.0000716 17 Regulation of cell adhesion 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000385 13 Chemotaxis 0.000385 13 Transition metal ion transport 0.000406 10 Chemokine biosynthesis 0.000407 5 Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | | | | | Defense response | and the second s | | | | Small GTPase mediated signal transduction 0.0000716 17 Regulation of cell adhesion 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000385 13 Chemotaxis 0.000385 13 Transition metal ion transport 0.000406 10 Chemokine biosynthesis 0.000407 5 Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 Neutrophil chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | | | 90.00 | | Regulation of cell adhesion 0.000326 7 Protein targeting 0.000359 12 Taxis 0.000385 13 Chemotaxis 0.000385 13 Transition metal ion transport 0.000406 10 Chemokine biosynthesis 0.000407 5 Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | | | | | Protein targeting 0.000359 12 Taxis 0.000385 13 Chemotaxis 0.000385 13 Transition metal ion transport 0.000406 10 Chemokine biosynthesis 0.000407 5 Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 Neutrophil chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | | | | | Taxis 0.000385 13 Chemotaxis 0.000385 13 Transition metal ion transport 0.000406 10 Chemokine biosynthesis 0.000407 5 Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 Neutrophil chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | | | | | Chemotaxis 0.000385 13 Transition metal ion transport 0.000406 10 Chemokine biosynthesis 0.000407 5 Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 Neutrophil chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | | | | | Transition metal ion transport 0.000406 10 Chemokine biosynthesis 0.000407 5 Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 Neutrophil chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | | | | | Chemokine biosynthesis 0.000407 5 Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 Neutrophil chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | | | 1550 | | Chemokine metabolism 0.000407 5 Immune cell chemotaxis 0.000407 5 Neutrophil chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | | | | | Immune cell chemotaxis 0.000407 5 Neutrophil chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | | | - | | Neutrophil chemotaxis 0.000407 5 Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | | | - | | Response to pest, pathogen or parasite 0.000502 24 Dopamine metabolism 0.000518 4 | | | _ | | Dopamine metabolism 0.000518 4 | Neutrophil chemotaxis | | | | | | | - | | Intracellular protein transport 0.00055 13 | | | 100 | | | Intracellular protein transport | 0.00055 | 13 | cardiovascular system development and function, lipid metabolism, renal and urological disease. The networks involved in skeletal and muscular system development and function, cellular development, function, growth and proliferation, connective tissue development, function and disorders were chosen (Table 3). Canonical pathway analysis was then used to assess which pathways were active at each time point. We focused on the dynamic state of bone formation after implantation, merging the 11 involved networks listed in Table 3. After merging the networks listed in Table 3, large numbers of canonical pathways were obtained, which were based on their functional annotations and known molecular interactions by IPA; the top 20 canonical pathways are shown in Table 4. The top one in Table 4, the role of osteoblasts and osteoclasts, which is most important for bone remodeling, was focused on for further research. As can be seen in Appendix A, this Table 2 Up- and down-regulated genes involved in gene ontology at 3 time points. | Gene ontology/gene title | GenBank ID | Fold
chang | |--|--|-------------------| | Up-regulated genes in β-TCP on day 4 | | | | Cell proliferation and adhesion | | | | Vascular cell adhesion molecule 1 | NM_001003298 | 7.0 | | CD34 antigen | NM_001003341 | 6.6 | | Aggrecan 1 | XM_536187 | 4.4 | | Collagen, type I, alpha I | NM_001003090 | 3.2 | | asp (abnormal spindle) homolog | XM_537130 | 2.6 | | Transforming growth factor, beta 1 | NM_001003309 | 2.0 | | Cell death and apoptosis | | | | v-myc myelocytomatosis viral oncogene homolog | NM_001003246 | 2.9 | | Uveal autoantigen with coiled-coil domains | NM_001003112 | 2.3 | | Cytokine and growth factor activity | | | | Interleukin 12B | NM_001003292 | 12.3 | | KIT ligand | NM_001012735 | 2.3 | | Keratinocyte growth factor | NM_001003237 | 2.3 | | Basic fibroblast growth factor | XM_533298 | 2.1 | | Signal transduction | | | | Prostaglandin F2-alpha receptor | XM_537105 | 5.7 | | Secreted frizzled-related protein 2 | NM_001002987 | 4.5 | | Neuroblastoma RAS viral (v-ras) oncogene homolog | XM_843536 | 4.1 | | Phosphodiesterase 5A, cGMP-specific | NM_001003188 | 4.1 | | Platelet-derived growth factor receptor, beta | NM_001003382 | 4.0 | | Proteolysis | | | | Mastin | NM_001005260 | 3.1 | | Angiotensin-converting enzyme | XM_548035 | 3.0 | | Cathepsin C | XM_533981 | 2.2 | | Matrix metallopeptidase 2 | XM_535300 | 2.1 | | Beta-site APP-cleaving enzyme 1 | XM_546508 | 2.0 | | Inflammatory and immune responses | 7411_5 10500 | 2.0 | | Stromal cell-derived factor 1 | XM_844174 | 2.7 | | Four and a half LIM domains 1 | NM_001003080 | 2.6 | | | NM_001003000 | 2.5 | | Cytotoxic T-lymphocyte-associated protein 4 | | 2.2 | | Ferritin, heavy polypeptide 1 | NM_001003080 | 2.2 | | Response to stress | NB4 001021622 | 2.4 | | Endothelin receptor type A | NM_001031632 | 2.4 | | Serum amyloid A protein | NM_001003050 | 2.0 | | Glutathione peroxidase 1 | XM_533828 | 2.0 | | Down-regulated genes in β-TCP on day
4
Cell proliferation and adhesion | | | | Cyclin B3 | NM_001005763 | 0.5 | | Cadherin 1, type 1 | XM_536807 | 0.4 | | Interleukin 18 | NM_001003169 | 0.4 | | Vascular endothelial growth factor A | NM_001003175 | 0.3 | | Collagen, type IV, alpha 5 | NM_001002979 | 0.2 | | Cell death and apoptosis | | | | Ras-related protein Rab-27A (Rab-27) | XM_846225 | 0.5 | | mal, T-cell differentiation protein | NM_001003253 | 0.4 | | Poly(A) binding protein, nuclear 1 | NM_001033233 | 0.3 | | Collagen, type IV, alpha 3 | XM_534590 | 0.3 | | Caspase 3, apoptosis-related cysteine peptidase | NM_001003042 | 0.3 | | | 1111_001003042 | 0.5 | | Cytokine and growth factor Chemokine (C–C motif) ligand 7 | NM_001010960 | 0.4 | | | | 0.4 | | Interleukin 1 receptor antagonist | NM_001003096 | 0.3 | | Interleukin 1, alpha | NM_001003157 | | | Chemokine (C–C motif) ligand 4 | NM_001005250 | 0.2 | | Interleukin-24 precursor | XM_846427 | 0.2 | | Signal transduction | VI.4 F22F24 | | | Guanine nucleotide binding protein (G protein), q | XM_533521 | 0.5 | | Taste receptor, type 1, member 3 | NM_001031821 | 0.5 | | Protein kinase C, delta | NM_001008716 | 0.5 | | Toll-like receptor 2 | NM_001005264 | 0.5 | | egf-like module containing | XM_542133 | 0.5 | | Proteolysis | | | | Ubiquitin specific peptidase 11 | XM_538016 | 0.4 | | Plasminogen activator, urokinase | XM_536394 | 0.4 | | Glutaminyl-peptide cyclotransferase | XM_532934 | 0.4 | | Caspase 3, apoptosis-related cysteine peptidase | NM_001003042 | 0.3 | | inflammatory and immune responses | | | | | NM_001003133 | 0.5 | | | | | | Myxovirus (influenza virus) resistance 2 | XM 534713 | 0.5 | | Myxovirus (influenza virus) resistance 2
2–5-oligoadenylate synthetase-like isoform a | XM_534713
NM_001003080 | 0.5
0.4 | | Myxovirus (influenza virus) resistance 2 | XM_534713
NM_001003080
XM_845646 | 0.5
0.4
0.3 | | Gene ontology/gene title | GenBank ID | Fold
change | |---|-----------------|----------------| | Response to stress | | | | Cathelicidin antimicrobial peptide | NM_001003359 | 0.5 | | Myxovirus (influenza virus) resistance 1 | NM_001003134 | 0.4 | | Mitogen-activated protein kinase 14 | NM_001003206 | 0.4 | | Coagulation factor III (thromboplastin, tissue factor) | NM_001024640 | 0.3 | | Heat shock protein 70 | NM_001003067 | 0.2 | | Up-regulated genes in β-TCP on day 7
Cell proliferation and adhesion | | | | Aggrecan 1 | XM_536187 | 5.5 | | Neural cell adhesion molecule 1 | NM_001010950 | 4.4 | | Collagen, type I, alpha I | NM_001003090 | 3.5 | | Desmocollin 2 | XM_537291 | 3.4 | | Laminin, alpha 3 | XM_537297 | 3.2 | | Activated leukocyte cell adhesion molecule Cell death and apoptosis | XM_535727 | 2.2 | | SRY (sex determining region Y)-box 9 | NM_001002978 | 2.7 | | Cytokine and growth factor activity | | | | Chemokine (C-C motif) ligand 21 | NM_001005258 | 2.6 | | Chemokine (C-X-C motif) ligand 10 Signal transduction | NM_001010949 | 2.1 | | Neuroblastoma RAS viral (v-ras) oncogene homolog | XM_843536 | 12.3 | | Secreted frizzled-related protein 2 | NM_001002987 | 7.9 | | Phosphodiesterase 5A, cGMP-specific | NM_001003188 | 7.7 | | ATPase, Ca++ transporting, cardiac muscle, slow twitch 2 | NM_001003214 | 7.2 | | Parathyroid hormone receptor 1 Proteolysis | NM_001003155 | 7.0 | | Angiotensin-converting enzyme | XM_548035 | 4.5 | | Matrix metallopeptidase 2 | XM_535300 | 2.6 | | Mastin nflammatory and immune responses | NM_001005260 | 2.1 | | Myxovirus resistance | NM_001003134 | 4.5 | | Four and a half LIM domains 1
Response to stress | NM_001003080 | 2.3 | | Glutathione peroxidase 5 | NM_001003213 | 12.3 | | MRE11 meiotic recombination 11 homolog A | XM_542244 | 6.0 | | MutS homolog 2, colon cancer, nonpolyposis type 1 | XM_538482 | 2.0 | | Down-regulated genes in β-TCP on day 7 | | | | Cell proliferation and adhesion | NIM 001002022 | 0.5 | | von Willebrand factor | NM_001002932 | 0.5 | | Phosphatase and tensin homolog | NM_001003192 | 0.5 | | Interleukin 8 | NM_001003200 | 0.5 | | Cyclin-dependent kinase inhibitor 1A Cytokine and growth factor | XM_532125 | | | Caspase 3, apoptosis-related cysteine peptidase | NM_001003042 | 0.5 | | Caspase 4, apoptosis-related cysteine peptidase | NM_001003125 | 0.5 | | Phosphatase and tensin homolog | NM_001003192 | 0.5 | | Baculoviral IAP repeat-containing 3 | XM_546551 | 0.3 | | BCL2/adenovirus E1B 19 kDa interacting protein 3 Cytokine and growth factor | XM_844054 | 0.3 | | Chemokine (C-C motif) ligand 3 | NM_001005251 | 0.5 | | Vascular endothelial growth factor A | NM_001003175 | 0.3 | | Interferon gamma | NM_001003174 | 0.3 | | Granulocyte macrophage-colony stimulating factor
Signal transduction | NM_001003245 | 0.0 | | GTP binding protein | NM_001003254 | 0.5 | | egf-like module-containing mucin-like receptor 3 isoform a | XM_542016 | 0.4 | | Adrenergic, beta-2-, receptor, surface | NM_001003234 | 0.4 | | ras p21 | XM_543756 | 0.4 | | egf-like module containing
Proteolysis | XM_542133 | 0.4 | | Transferrin receptor (p90, CD71) | NM_001003111 | 0.5 | | Cathepsin D | NM_001005111 | 0.5 | | Matrix metallopeptidase 13 | XM_536598 | 0.4 | | Matrix metallopeptidase 13 Matrix metallopeptidase 9 | NM_001003219 | 0.3 | | Matrix metallopeptidase 3 | NM_001003213 | 0.2 | | inflammatory and immune responses | | _ | | Interleukin 1, beta | XM_849577 | 0.4 | | Cytotoxic T-lymphocyte-associated protein 4 | NM_001003106 | 0.4 | | | NM_001003252 | 0.3 | | CD4 molecule | 14141_001003232 | | (continued on next page) | T-L1- 3 | (continued) | |----------|-------------| | i abie z | (continuea) | RAB2A | able 2 (continued) | | | | |---|------------------------------|----------------|--| | Gene ontology/gene title | GenBank ID | Fold
change | | | Response to stress | | | | | Coagulation factor III | NM_001024640 | 0.4 | | | Adrenergic, beta-2-, receptor, surface | NM_001003234 | 0.4 | | | MRE11 meiotic recombination 11 homolog A | XM_542244 | 0.4 | | | CD4 molecule
RAD51 homolog | NM_001003252
NM_001003043 | 0.3
0.3 | | | KAD51 Holliolog | 1414_001003043 | 0.5 | | | Up-regulated genes in β-TCP on day 14 Cell proliferation and adhesion | | | | | Fibronectin 1 | XM_536059 | 4.4 | | | Secreted phosphoprotein 1 | XM_535649 | 2.2 | | | Cyclin-dependent kinase inhibitor 1A | XM_532125 | 2.2 | | | Collagen, type I, alpha I Cell death and apoptosis | NM_001003090 | 2.0 | | | Uveal autoantigen with coiled-coil domains | NM_001003112 | 2.1 | | | Cytokine and growth factor activity | | | | | Interferon gamma | NM_001003174 | 16.7 | | | Interleukin 5 | NM_001006950 | 7.1 | | | Signal transduction | | | | | 5-Hydroxytryptamine receptor 2 C | NM_001006648 | 3.3 | | | cOR8G8P | NC_006587 | 2.6 | | | Hypoxia-inducible factor 1, alpha subunit | XM_537471 | 2.5 | | | Progesterone receptor | NM_001003074
NM_001003008 | 2.3
2.2 | | | Rhophilin, Rho GTPase binding protein 2
Proteolysis | NW_001003008 | 2.2 | | | Matrix metallopeptidase 9 | NM_001003219 | 2.7 | | | Matrix metallopeptidase 13 | XM_536598 | 2.4 | | | Elastase 1, pancreatic | NM_001003007 | 2.4 | | | Inflammatory and immune responses | XM 844174 | 3.3 | | | Stromal cell-derived factor 1 Response to stress | | | | | Cathelicidin antimicrobial peptide | NM_001003359 | 6.5 | | | Down-regulated genes in β -TCP on day 14 | | | | | Cell proliferation and adhesion | | | | | Protein phosphatase 2 | NM_001003063 | 0.5 | | | Selectin P | XM_537202 | 0.5 | | | Interleukin 1, beta | XM_849577
NM_001003169 | 0.5
0.4 | | | Interleukin 18
Vascular endothelial growth factor A | NM_001003175 | 0.4 | | | RAD51 homolog | NM_001003173 | 0.4 | | | Palmitoyl-protein thioesterase 1 | NM_001010944 | 0.4 | | | KIT ligand | NM_001012735 | 0.2 | | | Brain-derived neurotrophic factor | NM_001002975 | 0.2 | | | asp homolog | XM_537130 | 0.2 | | | Protein phosphatase 2 | NM_001003063 | 0.2 | | | Fibroblast growth factor 7 | NM_001003237 | 0.2 | | | Interleukin 1, alpha | NM_001003157 | 0.2 | | | CD4 molecule | NM_001003252
NM_001010944 | 0.1
0.1 | | | Palmitoyl-protein thioesterase 1 Activated leukocyte cell adhesion molecule | XM_535727 | 0.1 | | | Cell death and apoptosis | 74VL_333727 | 0.0 | | | Tumor rejection antigen (gp96) 1 | NM_001003327 | 0.5 | | | v-myc myelocytomatosis viral oncogene homolog | NM_001003246 | 0.4 | | | Palmitoyl-protein thioesterase 1 | NM_001010944 | 0.4 | | | Baculoviral IAP repeat-containing protein 2
BCL2 | XM_536600
VM_844054 | 0.3
0.3 | | | Hypoxanthine phosphoribosyltransferase 1 | XM_844054
NM_001003357 | 0.3 | | | Ras-related protein Rab-27A | XM_846225 | 0.1 | | | Interleukin 6 | NM_001003301 | 0.2 | | | Caspase 8 isoform A | XM_545594 | 0.2 | | | Caspase 4, apoptosis-related cysteine peptidase | NM_001003125 | 0.1 | | | Cytokine and growth factor | | | | | Interleukin 12A | NM_001003293 | 0.5 | | | Chemokine (C-C motif) ligand 3 | NM_001005251 | 0.4 | | | Chemokine (C-C motif) ligand 7 Chemokine (C-C motif) ligand 8 | NM_001010960
NM_001005255 | 0.4
0.3 | | | Chemokine (C–C motif) ligand 8 Chemokine (C–C motif) ligand 2 | NM_001003297 | 0.3 | | | Chemokine (C-C motif) ligand 20 | NM_001005254 | 0.2 | | | Interleukin 1, beta | XM_849577 | 0.0 | | | Signal transduction | | 000000 | | | RAB5C | NM_001003261 | 0.5 | | | GNAS complex locus | NM_001003263 | 0.5 | | | RAN | NM_001003375 | 0.5 | | | DADO A | NIN 001002210 | OF | | Table 2 (continued) | Gene ontology/gene title | GenBank ID | Fold
change | |---|------------------------------|----------------| | | | Change | | Signal transduction Chemokine (C–C motif) receptor 3 | NM_001005261 | 0.5 | | RAB1A | NM_001003251 | 0.5 | | Chemokine (C–C motif) receptor 5 | NM_001012342 | 0.4 | | Angiopoietin 1 | NM_001005754 | 0.4 | | Guanine nucleotide binding
protein | NM_001003236 | 0.4 | | RAB22A | NM_001003208 | 0.4 | | RAB12, member RAS oncogene family | XM_537327 | 0.4 | | Prostaglandin F2-alpha receptor | XM_537105 | 0.4 | | Parathyroid hormone-like hormone | NM_001003303 | 0.4 | | Guanine nucleotide binding protein | XM_533951 | 0.3 | | Mitogen-activated protein kinase 14 | NM_001003206 | 0.3 | | Ribosome receptor | NM_001003179 | 0.3 | | Guanylate cyclase 1 | NM_001018034 | 0.3 | | RAB7 | NM_001003316
NM_001007263 | 0.3 | | Agouti signaling protein Toll-like receptor 2 | NM_001007263 | 0.3 | | Ras-related protein Rab-27A | XM_846225 | 0.2 | | Protein phosphatase 2 (formerly 2A), | NM_001003063 | 0.2 | | catalytic subunit, alpha isoform | 14111_001003003 | 0.2 | | Complement component 5a receptor 1 | NM_001003373 | 0.2 | | Cell division cycle 42 | NM_001003254 | 0.1 | | egf-like module containing, mucin-like, | XM_542133 | 0.1 | | hormone receptor-like sequence 1 | | | | Chemokine (C-X-C motif) receptor 4 isoform a | XM_541020 | 0.1 | | CD97 antigen isoform 1 precursor | XM_542020 | 0.1 | | fer tyrosine kinase | NM_001003141 | 0.1 | | GDP dissociation inhibitor 2 | NM_001003184 | 0.0 | | Proteolysis | | | | ADAM metallopeptidase domain 10 | XM_535496 | 0.5 | | SEC11 homolog A | NM_001003313
NM_001002938 | 0.4
0.4 | | Cathepsin S
Cathepsin L2 | NM_001002938 | 0.4 | | Angiotensin-converting enzyme | XM_548035 | 0.5 | | SEC11-like 3 | NM_001003312 | 0.3 | | Mastin | NM_001005260 | 0.3 | | Cathepsin C | XM_533981 | 0.3 | | Transferrin receptor | NM_001003111 | 0.3 | | Cathepsin D | NM_001025621 | 0.2 | | Myosin, heavy polypeptide 9 | XM_538401 | 0.2 | | Caspase-12 precursor | XM_536593 | 0.1 | | Plasminogen activator, urokinase | XM_536394 | 0.1 | | Inflammatory and immune responses | | 2 2 | | Ferritin, heavy polypeptide 1 | NM_001003080 | 0.5 | | Interleukin 12A | NM_001003293 | 0.5 | | Cytotoxic T-lymphocyte-associated protein 4 | NM_001003106
NM_001003133 | 0.3
0.4 | | Myxovirus resistance 2
Mitogen-activated protein kinase 14 | NM_001003133 | 0.3 | | Major histocompatibility complex | NM_001013200 | 0.3 | | 2–5 oligoadenylate synthetase 2 isoform p69 | XM_848678 | 0.2 | | Serum amyloid A protein | NM_001003050 | 0.2 | | MHC class II DLA-DQ beta chain b1 domain | NM_001014381 | 0.1 | | 2',5'-oligoadenylate synthetase 1, 40/46 kDa | XM_845646 | 0.1 | | Hypothetical protein LOC612602 | NM_001003080 | 0.1 | | MHC class I DLA-88; MHC class I DLA-12 | NM_001014379 | 0.0 | | Hypoxanthine phosphoribosyltransferase 1 | NM_001003357 | 0.1 | | Response to stress | | | | Protein phosphatase 1 | NM_001003034 | 0.4 | | Coagulation factor III | NM_001024640
NM_001003122 | 0.4 | | Dual oxidase 1 | NM_001003122
NM_001003376 | 0.3
0.2 | | O-6-methylguanine-DNA methyltransferase
CD163 molecule | XM_534898 | 0.2 | | MRE11 meiotic recombination 11 homolog A | XM_542244 | 0.2 | | Serum amyloid A protein | NM_001003050 | 0.2 | | CD4 molecule | NM_001003252 | 0.1 | | | | 1500000 | yielded hundreds of canonical pathways, with various pathways active at some or all of the three time points. The top canonical pathways involving osteoblasts and osteoclasts were listed (see Appendix A) and comprised numerous components, including bone matrix proteins, cytokines, growth factors and transcription factors (Fig. 3). To better understand the role of osteoblasts and osteoclasts after $\beta\text{-TCP}$ implantation, we sought the specific genes affected. Please cite this article as: Zhao J, et al, Transcriptome analysis of β -TCP implanted in dog mandible, Bone (2010), doi:10.1016/j. bone.2010.11.019 NM_001003318 0.5 **Table 3** Identification of top function^a in molecular networks^b generated by Ingenuity Pathway Analysis. | Analysis | Molecules in network | Scorec | Focus
molecular ^d | Top function | |----------|---|--------|---------------------------------|---| | Day 4 | AASS, ASPM, ASPN, ATP13A3, B3GALT2, BAMBI, CNN3, DYRK2, ESPL1, FBN1, FBN2, FILIP1L, GGPS1, GYG1, H1FX, HNMT, LANCL1, MFAP2, MFAP5, MYOF, NIPA2, NOC3L, PILRA, RAMP2, RBMP2, RBMS3, S100A5, SLC39A1, SPARCL1, STOML2, TAX1BP3, TCN2, | 38 | 34 | Cell morphology, skeletal and muscular system development and function, respiratory disease | | Day 7 | TCN2, TCFB1, TPST2, WDR68 ANGPT1, BTLA, CA3,CAP2, CDC42BPB, CPNE4, CRKRS, CUL4A, CYP27B1, DDX21, DET1, DHX9, DR1, ELP2, FOXN2, FUBP1, GMDS, HAS2, HBB, ILK, JARID1B, MED7, MYCBP2, NFE2, NR2C2AP, NUP93, PARVA, PTEN, SMC5, SMOX, TCEB3, TNFRSF14, UGCGL1 | 37 | 33 | Hematological disease, organismal injury and abnormalities, cell morphology | | Day 14 | AASDHPPT, C110RF58, C140RF166, C220RF28, CBLL1, CDC5L, DRG1, EML3, ESD, FAM62A, GLRX5, HLA-B, IARS2, K1AA0999, LARP1, LRRC40, MARK2, MRPS14, MY0F, PINX1, PPIB, PSMC6, PTGES3, RPL32, RRP1B, SBDS, SEC63, SEC23A, SLC1A5, TRAP1, TSN, TSR1, WWC2, YWHAQ, YWHAZ | 34 | 35 | Cell-mediated immune, response, cellular
assembly and organization, cellular function
and maintenance | | Day 7 | A2BP1, ACAN, ALOX15B, ASPN, BGN, BICC1, CST6, FBLN1, FBLN2, FBN1, FBN2, IGFBP, LAMA3, LAMA4, LAMC2, MFAP5, MMP2, MMP16, MMP19, MYBPH, NID1, OGN, PCOLCE, PDGFRI, PTS, QKI, RAB23, SFRP2, TIL1, TNFSF9, TNIP1, TREM1 | 34 | 31 | Protein degradation, cellular assembly and organization, cellular function and maintenance | | Day 14 | BCLAF, BRPF3, CNBP, EBNA1BP2, ERH, FCN1, CRB2, HIBCH, HNRNPR, HTRA1, KIF13A, PEX13, PRMT1, PSPH, RAI14, RCC2, RPL7, RPL18, RPL36,RPS5, RSL1D1, SMU1, SNAPC3, SNRNP200, SNX7, SNX8, SUMO2, SYNCRIP, SYNPO, UACA, UCK2, UGP2, VPS13A, ZFP106 | 31 | 34 | Genetic disorder, neurological disease, skeletal
and muscular disorders | | Day 7 | ACADVL, ADAMTS2, CASP4, CTSD, ENPEP, ESRRA, HGS, HNRNPM, LGMN, LTF, LYST, MMP3, MMP13, NAALAD2, OSM, P4HA3, PDIA4, RNF15O, SERPINA1, SERPINE1, SHFM1, SNRPA1, SPHK1, SPPL2B, TADA2L, TADA3L, TFPI2, TIMP1, TSKU, VWF | 31 | 30 | Protein degradation, connective tissue disorders, genetic disorders | | Day 7 | ABTB1, BMP3, BMP4, BMPR1A, DPP10, EIF3E, FST, IFIT1, ITM2C, KCNN3, MTMR10, NEDD4L, OSBPL3, PPP1R9B, PTHLH, RBP4, RGS2, RHPN2, SFRS5, SILI, SIP1, SMAD1, SMAD9, SMURF1, SNRPF, SRRM1, SVEP1, TMEM57, TTF | 30 | 29 | Cell signaling, cellular development, connective tissue development and function | | Day 14 | ARLG, ARLGIPS, ARLGIPG, C100RF10, CAPRIN1, CD163, EXOC1, EXOC2, EXOC3, EXOC5, EXOC8, FCGRT, FFAR2, GPNMB, 1L6, 1L27, KIAA0101, KIF11, LY86, MRV11, NUF2, PLXND1, PRAF2, RALB, REEP3, SC5DL, SEC61A1, SEC61A2, SEC61B, SEMA4A, SNX10, SPC25, TMEM9B | 27 | 30 | Cancer, skeletal and muscular disorders, tumor morphology | | Day 14 | CDC42EP5, CNIH4, CSF2Ra, CSF3R, EIF3M, EXOSC1, EXOSC3, EXOSC8, EXOSC10, FERMT3, FOXN3, 1SOC2, KCTD3, KIF5A, KLC1, LSM1, LSM3, LSM4, LSM5, LSM8, RNASEL, RPE, SEPT2, SEPT5, SEPT7, SEPT11, TNN, TOR1A, TOR1AIP1, TOX4, ZAK | 27 | 32 | Cancer, cellular growth and proliferation, neurological disease | | Day 14 | AATF, ANKLE2, CALCOCO2, DARC, DAZAP2, DCUN1D1, DMWD, DUOX1, ELA1, FTL, GLG1, 1L8, ING2, KIAA1279, LAPTM5, MPHOSPH6, NAMPT, PELI1, PI3, PPBP, PXMP3, RNF11, RPS20, SERPINB1, SPG20, STAM2, TBC1D8,TLE1, UBXN11, WWP1, AFYVE9, ANF638 | 27 | 32 | Cellular function and maintenance, hematological system development and function, inflammatory response | | Day 4 | ACAN, ADAMTSS, ALPL, CCL7, CCRN4L, EFEMP1, IGFBP2, IGFBP4, IGFBP5, ILIB, LUM, MMP7, MMP8, MMP16, PCOLCE, PLAT, PLB1, RARRES2, RASA2, RECK, SEPP1, SERPINB2, SLC1A3, 5LC25A25, SPINT1, TFP12, TIMP3, TREM2, TWIST1 | 27 | 29 | Cellular movement, skeletal and muscular
system development and function, connective
tissue disorders | ^a The assignment of functions to a network is based on the literature stored in the IPA Knowledge Base. The score provides the networks a measure of how accurate the focus genes are matched. The assessment is based on the number of focus genes and network size.
^d The number of focus genes in the network. The maximum number of focus genes in the network is 35. Tables 5 and 6 summarized the related genes identified as upregulated or down-regulated in Figs. 3a and b at one or more of the three time points tested. On days 4 and 7, the expression of both Wnt/β -catenin and bone morphogenic protein (BMP) were upregulated. In addition, the receptor activator of NF- κ B ligand (RANKL)/osteoprotegerin (OPG) expression ratio was increased on day 4, decreased on day 7, and unchanged from the control on day 14. The expression of alkaline phosphatase (ALP), COL1A1 and bone γ -carboxyglutamate [gla] protein/osteocalcin (BGLAP) was up-regulated on day 14, and the expression of GM-CSF and IFN- γ was down-regulated on day 7 (Table 6). ### RT-PCR and real-time PCR analyses RT-PCR and real-time PCR were performed to confirm changes in the expression of mRNAs encoding the proteins involved in bone development and formation of the extracellular matrix, including VCAM-1, SDF-1, ALP, COL1A1 and BGLAP. These results confirmed the findings obtained with the microarray and IPA analyses (Figs. 4 and 5 and Tables 7 and 8). #### Discussion $\beta\text{-TCP}$ has been used for bone regeneration, including dental implant therapy. When $\beta\text{-TCP}$ is mixed with the blood clot and surrounded by the bony walls of the alveolar socket, osteogenic cells, including undifferentiated mesenchymal cells, start migrating from the bone surface between and over the surface of β -TCP. Up until now, Table 4 Top 20 canonical pathways in IPA. | Pathway name | #Moleculars | |---|-------------| | Role of osteoblasts and osteoclasts | 25 | | Colorectal cancer metastasis signaling | 18 | | Lysine degradation | 17 | | Hepatic fibrosis/hepatic stellate cell activation | 17 | | Glucocorticoid receptor signaling | 16 | | Role of macrophages, fibroblasts and endothelial cell | 16 | | Acute phase response signaling | 16 | | Leukocyte extravasation signaling | 15 | | Molecular mechanisms of cancer | 15 | | RAR activation | 14 | | BMP signaling pathway | 13 | | Atherosclerosis signaling | 13 | | Bladder cancer signaling | 12 | | TGF-signaling | 12 | | IGF-1 signaling | 12 | | HIF 1 a signaling | 12 | | IL-8 signaling | 11 | | Oncostatin M signaling | 11 | | Axonal guidance signaling | 11 | | Regulation of eIF4 and p7OS6K signaling | 11 | b Transcripts with significantly different expression termed "Focus genes" were analyzed in Ingenuity Pathway Analysis (IPA) for generation of networks and assessment of function. Fig. 3. a: Schematic diagram illustrating the role of osteoblasts on day 4. b: Schematic diagram illustrating the role of osteoclasts on day 7. Up- and down-regulated genes are in red and green, respectively. Gray indicates that the genes are neither up- nor down-regulated, or do not meet the user-defined cutoff. White indicates genes that were not user specified but were incorporated into the network through relationships. Dashed line frame: genes that were validated by PCR. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) $\textbf{Table 5} \\ \textbf{Genes in the role of osteoblasts differentially expressed between control and } \beta\text{-TCP implant at 3 time points}.$ | Gene | Gene name | | Day 4 | | | Day 7 | | | Day 14 | | | | |--------|--|-----------|------------------|----------------|------------|------------------|----------------|-------------|------------------|----------------|--|--| | symbol | | Control | β-TCP
implant | Fold
change | Control | β-TCP
implant | Fold
change | Control | β-TCP
implant | Fold
change | | | | BMP1 | Bone morphogenetic protein 1 | 0.06 (A) | 1.00 (A) | _ | 0.93 (A) | 0.19 (A) | - | 1.19 (A) | 0.04 (A) | - | | | | BMP2 | Bone morphogenetic protein 2 | 7.54 (P) | 13.61 (P) | 1.8 | 137.10 (P) | 84.87 (P) | 0.6 | 37.1 (P) | 78.09 (P) | 2.1 | | | | BMP3 | Bone morphogenetic protein 3 | 0.15 (A) | 0.25 (A) | _ | 0.04 (A) | 1.00 (P) | 25.0 | 0.11 (A) | 0.82 (A) | - | | | | BMP4 | Bone morphogenetic protein 4 | 1.10 (A) | 1.24 (A) | _ | 0.97 (A) | 5.41 (P) | 5.6 | 3.50 (P) | 2.08 (A) | 0.6 | | | | BMP5 | Bone morphogenetic protein 5 | 1.07 (A) | 2.04 (P) | 1.9 | 1.00 (A) | 1.57 (P) | 1.6 | 1.77 (P) | 2.88 (A) | 1.6 | | | | BMP7 | Bone morphogenetic protein 7 | 0.07 (A) | 0.23 (A) | _ | 0.07 (A) | 0.02 (A) | - | 0.03 (A) | 0.31 (A) | _ | | | | BMP10 | Bone morphogenetic protein 10 | 0.10 (A) | 0.04 (A) | _ | 0.08 (A) | 0.10 (A) | ×-× | 0.49 (A) | 0.05 (A) | _ | | | | BMPR1A | Bone morphogenetic protein receptor, type IA | 0.51 (A) | 0.44 (A) | - | 0.27 (A) | 0.55 (P) | 2.0 | 0.50 (A) | 0.91 (P) | 1.8 | | | | SMAD1 | SMAD family member 1 | 0.75 (A) | 1.70 (M) | 2.3 | 0.77 (A) | 1.85 (P) | 2.4 | 1.83 (A) | 0.79 (A) | - | | | | SMAD5 | SMAD family member 5 | 0.84 (A) | 2.01 (A) | _ | 1.39 (A) | 1.63 (P) | 1.2 | 1.44 (P) | 0.45 (A) | 0.3 | | | | AXIN1 | axin1 | 0.60 (A) | 0.17 (A) | _ | 2.63 (M) | 0.70 (A) | 0.3 | 0.04 (A) | 0.10 (A) | - | | | | SMURF1 | SMAD specific E3 ubiquitin protein ligase1 | 0.41 (P) | 0.66 (P) | 1.6 | 1.60 (P) | 0.18 (A) | 0.1 | 0.43 (A) | 0.44 (A) | _ | | | | ALP | Alkaline phosphatase | 1.79 (P) | 6.31 (P) | 3.5 | 10.22 (P) | 40.24 (P) | 3.9 | 27.14 (P) | 27.00 (P) | 1.0 | | | | COL1A1 | Collagen, type I, alpha 1 | 40.94 (P) | 130.40 (P) | 3.2 | 113.80 (P) | 395.80 (P) | 3.5 | 1271.00 (P) | 2528.00 (P) | 2.0 | | | | BGLAP | Bone gamma-carboxyglutamate
(gla) protein (Osteocalcin) | 0.34 (A) | 0.03 (A) | - | 0.49 (A) | 4.27 (P) | 8.7 | 0.13 (A) | 2.68 (A) | - | | | P: Present; M: Marginal; A: Absent. a significant number of studies had focused on the osteoinduction mechanism of calcium phosphate biomaterials, such as β -TCP, but the mechanism of osteoinduction is still unclear from the available literature [16]. As we have known, after tooth extraction, bone healing and remodeling does not take place evenly in the whole tooth socket, but only takes place where the mesenchymal cells are, and the shape of each tooth socket is unique and irregular. In order to get all of the information regarding gene expression from the new bone, we have to recover all of the new bone right from the edge of each tooth socket where the mesenchymal cells might exist, but which is almost impossible. So in this study, collecting of samples including control and B-TCP group was not directly from tooth sockets after tooth extraction, but including two surgeries. Beagle dog mandibles were used to imitate clinical implants, and after about 3 months of bone healing following tooth extraction, an implant drill was used to make an artificial hole with a regular shape to make it easier for us to recover the new bone. The older beagle dogs were preferred for use in this study because this age of the beagle dog is equal to usual implant patients who have lost their teeth. This work contributes to a better basic understanding of the molecular mechanisms after implantation of β -TCP at an early stage, and the characteristics of β -TCP in bone tissue. Microarray and IPA technology might provide a tool for new biomaterial development and clinical treatment. The results of our histological analysis (Fig. 1) of bone tissue samples collected 4, 7 and 14 days after tooth extraction indicated that β -TCP stimulated bone formation at an early stage after implantation. Moreover, using microarray and IPA, we were able to assess the potential involvement of large numbers of genes, perhaps identifying candidate genes for implant research. Representative gene-expression profiles and the functional classification of genes were compared between an untreated control group and a group which received a β -TCP implant at the aforementioned time points. To identify candidate genes responsible for the observed effects of β -TCP, network and function analyses were performed using the IPA tool [17]. In our study, we succeeded in identifying 3409, 3956 and 6899 genes on days 4, 7 and 14, respectively, which were differentially expressed in the β -TCP implant compared to the control (Fig. 2). Table 1 shows the top 20 GO terms of each time point. On day 4, acute-phase response, regulation of MAPK activity, cell communication and regulation of cell proliferation were highly significant; these results illustrated that the bone tissue experienced an acute-phase response and primary tissue repair after surgery. On days 7 and 14, cell differentiation, skeletal development, biomineral formation, ossification, regulation of bone mineralization and bone remodeling were highly significant; these results explained the bone tissue remodeling and bone formation predominant on days 7 and 14. As seen in the gene list in Table 2, VCAM-1 was up-regulated on day 4, whereas SDF-1 was up-regulated on days 4 and 14. Meanwhile, confirmation by RT-PCR and real-time PCR (Figs. 4 and 5) showed that VCAM-1 was up-regulated on days 4 and 7, whereas SDF-1 was up-regulated at all time points. Notably, appropriate vascularization is emerging as a prerequisite for bone development and regeneration, and indeed there appeared to be a developmental reciprocity between endothelial cells and osteoblasts. The VCAM-1 molecule is important for cellular interactions, particularly between stromal and hematopoietic precursors [18]. Mesenchymal stem cells are found in sites just before hematopoiesis begins and may recruit hematopoietic **Table 6** Genes in the role of osteoclasts differentially expressed between control and β -TCP implant at 3 time points. | Gene
symbol | Gene name | Day 4 | | | | Day 7 | | | Day 14 | | | |----------------|--|----------|------------------|----------------|-----------
------------------|----------------|----------|-------------------|----------------|--| | | | Control | β-TCP
implant | Fold
change | Control | β-TCP
implant | Fold
change | Control | β-TCP
implant | Fold
change | | | | | 2.61 (A) | 0.36 (A) | _ | 2.05 (M) | 0.10 (A) | 0.05 | 0.22 (A) | 0.71 (A) | _ | | | GM-CSF | Granulocyte macrophage-colony stimulating factor | | . , | | | | 0.3 | 0.17 (A) | 2.88 (P) | 16.9 | | | IFN-γ | Interferon gamma | 0.62 (A) | 1.07 (P) | 1.7 | 7.47 (P) | 2.21 (P) | | | The second second | | | | RANKL | | 1.30 (P) | 2.58 (P) | 2.0 | 60.19 (P) | 2.38 (P) | 0.04 | 1.30 (P) | 0.43 (A) | 0.3 | | | OPG | Osteoprotegerin | 1.43 (P) | 0.73 (P) | 0.5 | 0.36 (A) | 1.30 (P) | 3.6 | 0.41 (P) | 0.11 (A) | 0.3 | | P: Present; M: Marginal; A: Absent. **Table 5** Genes in the role of osteoblasts differentially expressed between control and β -TCP implant at 3 time points. | Gene
symbol | Gene name | | Day 4 | | | Day 7 | | | Day 14 | | | | |-----------------|--|-----------|------------------|----------------|------------|------------------|------------------|-------------|------------------|----------------|--|--| | | | Control | β-TCP
implant | Fold
change | Control | β-TCP
implant | Fold
change | Control | β-TCP
implant | Fold
change | | | | BMP1 | Bone morphogenetic protein 1 | 0.06 (A) | 1.00 (A) | _ | 0.93 (A) | 0.19 (A) | - | 1.19 (A) | 0.04 (A) | - | | | | BMP2 | Bone morphogenetic protein 2 | 7.54 (P) | 13.61 (P) | 1.8 | 137.10 (P) | 84.87 (P) | 0.6 | 37.1 (P) | 78.09 (P) | 2.1 | | | | BMP3 | Bone morphogenetic protein 3 | 0.15 (A) | 0.25 (A) | _ | 0.04 (A) | 1.00 (P) | 25.0 | 0.11 (A) | 0.82 (A) | - | | | | BMP4 | Bone morphogenetic protein 4 | 1.10 (A) | 1.24 (A) | _ | 0.97 (A) | 5.41 (P) | 5.6 | 3.50 (P) | 2.08 (A) | 0.6 | | | | BMP5 | Bone morphogenetic protein 5 | 1.07 (A) | 2.04 (P) | 1.9 | 1.00 (A) | 1.57 (P) | 1.6 | 1.77 (P) | 2.88 (A) | 1.6 | | | | | Bone morphogenetic protein 7 | 0.07 (A) | 0.23 (A) | _ | 0.07 (A) | 0.02 (A) |). - | 0.03 (A) | 0.31 (A) | - | | | | BMP7 | Bone morphogenetic protein 10 | 0.07 (A) | 0.04 (A) | _ | 0.08 (A) | 0.10 (A) | _ | 0.49 (A) | 0.05 (A) | - | | | | BMP10
BMPR1A | Bone morphogenetic protein | 0.51 (A) | 0.44 (A) | - | 0.27 (A) | 0.55 (P) | 2.0 | 0.50 (A) | 0.91 (P) | 1.8 | | | | SMAD1 | receptor, type IA
SMAD family member 1 | 0.75 (A) | 1.70 (M) | 2.3 | 0.77 (A) | 1.85 (P) | 2.4 | 1.83 (A) | 0.79 (A) | - | | | | SMAD5 | SMAD family member 5 | 0.84 (A) | 2.01 (A) | _ | 1.39 (A) | 1.63 (P) | 1.2 | 1.44 (P) | 0.45 (A) | 0.3 | | | | AXIN1 | axin1 | 0.60 (A) | 0.17 (A) | _ | 2.63 (M) | 0.70 (A) | 0.3 | 0.04 (A) | 0.10 (A) | - | | | | SMURF1 | SMAD specific E3 ubiquitin protein ligase1 | 0.41 (P) | 0.66 (P) | 1.6 | 1.60 (P) | 0.18 (A) | 0.1 | 0.43 (A) | 0.44 (A) | _ | | | | ALP | Alkaline phosphatase | 1.79 (P) | 6.31 (P) | 3.5 | 10.22 (P) | 40.24 (P) | 3.9 | 27.14 (P) | 27.00 (P) | 1.0 | | | | COL1A1 | Collagen, type I, alpha 1 | 40.94 (P) | 130.40 (P) | 3.2 | 113.80 (P) | 395.80 (P) | 3.5 | 1271.00 (P) | 2528.00 (P) | 2.0 | | | | BGLAP | Bone gamma-carboxyglutamate
(gla) protein (Osteocalcin) | 0.34 (A) | 0.03 (A) | - | 0.49 (A) | 4.27 (P) | 8.7 | 0.13 (A) | 2.68 (A) | - | | | P: Present; M: Marginal; A: Absent. a significant number of studies had focused on the osteoinduction mechanism of calcium phosphate biomaterials, such as β -TCP, but the mechanism of osteoinduction is still unclear from the available literature [16]. As we have known, after tooth extraction, bone healing and remodeling does not take place evenly in the whole tooth socket, but only takes place where the mesenchymal cells are, and the shape of each tooth socket is unique and irregular. In order to get all of the information regarding gene expression from the new bone, we have to recover all of the new bone right from the edge of each tooth socket where the mesenchymal cells might exist, but which is almost impossible. So in this study, collecting of samples including control and β -TCP group was not directly from tooth sockets after tooth extraction, but including two surgeries. Beagle dog mandibles were used to imitate clinical implants, and after about 3 months of bone healing following tooth extraction, an implant drill was used to make an artificial hole with a regular shape to make it easier for us to recover the new bone. The older beagle dogs were preferred for use in this study because this age of the beagle dog is equal to usual implant patients who have lost their teeth. This work contributes to a better basic understanding of the molecular mechanisms after implantation of β -TCP at an early stage, and the characteristics of β -TCP in bone tissue. Microarray and IPA technology might provide a tool for new biomaterial development and clinical treatment. The results of our histological analysis (Fig. 1) of bone tissue samples collected 4, 7 and 14 days after tooth extraction indicated that β -TCP stimulated bone formation at an early stage after implantation. Moreover, using microarray and IPA, we were able to assess the potential involvement of large numbers of genes, perhaps identifying candidate genes for implant research. Representative gene-expression profiles and the functional classification of genes were compared between an untreated control group and a group which received a β -TCP implant at the aforementioned time points. To identify candidate genes responsible for the observed effects of β -TCP, network and function analyses were performed using the IPA tool [17]. In our study, we succeeded in identifying 3409, 3956 and 6899 genes on days 4, 7 and 14, respectively, which were differentially expressed in the β -TCP implant compared to the control (Fig. 2). Table 1 shows the top 20 GO terms of each time point. On day 4, acute-phase response, regulation of MAPK activity, cell communication and regulation of cell proliferation were highly significant; these results illustrated that the bone tissue experienced an acute-phase response and primary tissue repair after surgery. On days 7 and 14, cell differentiation, skeletal development, biomineral formation, ossification, regulation of bone mineralization and bone remodeling were highly significant; these results explained the bone tissue remodeling and bone formation predominant on days 7 and 14. As seen in the gene list in Table 2, VCAM-1 was up-regulated on day 4, whereas SDF-1 was up-regulated on days 4 and 14. Meanwhile, confirmation by RT-PCR and real-time PCR (Figs. 4 and 5) showed that VCAM-1 was up-regulated on days 4 and 7, whereas SDF-1 was up-regulated at all time points. Notably, appropriate vascularization is emerging as a prerequisite for bone development and regeneration, and indeed there appeared to be a developmental reciprocity between endothelial cells and osteoblasts. The VCAM-1 molecule is important for cellular interactions, particularly between stromal and hematopoietic precursors [18]. Mesenchymal stem cells are found in sites just before hematopoiesis begins and may recruit hematopoietic **Table 6**Cenes in the role of osteoclasts differentially expressed between control and β -TCP implant at 3 time points. | Gene
symbol | Gene name | Day 4 | | Day 7 | | Day 14 | | | | | |----------------|---|----------|------------------|----------------|-----------|------------------|----------------|----------|------------------|----------------| | | | Control | β-TCP
implant | Fold
change | Control | β-TCP
implant | Fold
change | Control | β-TCP
implant | Fold
change | | GM-CSF | Granulocyte macrophage-colony stimulating factor | 2.61 (A) | 0.36 (A) | - | 2.05 (M) | 0.10 (A) | 0.05 | 0.22 (A) | 0.71 (A) | - | | Marriago V | Interferon gamma | 0.62 (A) | 1.07 (P) | 1.7 | 7.47 (P) | 2.21 (P) | 0.3 | 0.17 (A) | 2.88 (P) | 16.9 | | IFN-γ
RANKL | Receptor activator of nuclear factor kappa B ligand | 1.30 (P) | 2.58 (P) | 2.0 | 60.19 (P) | 2.38 (P) | 0.04 | 1.30 (P) | 0.43 (A) | 0.3 | | OPG | Osteoprotegerin | 1.43 (P) | 0.73 (P) | 0.5 | 0.36 (A) | 1.30 (P) | 3.6 | 0.41 (P) | 0.11 (A) | 0.3 | P: Present; M: Marginal; A: Absent. Fig. 4. RT-PCR analysis of target genes. Ethidium bromide staining patterns for the amplified PCR products using agarose gel electrophoresis are shown. precursor cells, in part by the expression of VCAM-1 [19]. Mazo I.B. et al. also reported that increased VCAM-1 induced hematopoietic progenitor cell recruitment to bone marrow [20]. SDF-1 recruits mesenchymal stem cells to bone repair sites during the early phase of bone repair. Kitaori T. et al. reported that SDF-1 is induced in the periosteum of injured bone and promotes bone healing by recruiting mesenchymal stem cells to the site of injury [21]. The enhancement of VCAM-1 and SDF-1 at the early stage of β -TCP implantation in the dog mandible might be the mechanism of bone regeneration and bone healing. Table 4 shows the top 20 canonical pathways from the hundreds of canonical pathways developed from information contained in the IKB. Some pathways should not be noticed as direct attributes of bone tissue, such as colorectal cancer metastasis signaling, hepatic fibrosis or bladder cancer signaling, but the genes involved in these pathways should also be related to bone tissue regeneration. The IKB is a repository of biological interactions and functional annotations based on the literature and original articles, and are manually reviewed for accuracy. In other words, these pathways were named based on the literature and original articles when they were discovered for the first time. The information in the IKB, and the relationships found in this study are not merely specific for bone tissue or for osteoblast- and osteoclast-containing tissue in general. However, the analysis
gave a good indication of the relevant processes by drawing parallels with the knowledge obtained from other organ systems and in vitro studies. Despite these considerations, gene-expression profiles and IKB can provide valuable information about important and complex bone remodeling processes. So much detail was impossible to clarify here. In addition, we clarified the top signaling pathway related to osteoblasts and osteoclasts (Fig. 3), which is the most meaningful in transcriptome analysis. We found that the BMP and Wnt/ β -catenin signaling pathways were up-regulated in osteoblasts by β -TCP early after implantation (Fig. 3a and Table 5). BMP family members contribute to a key canonical signaling pathway leading to osteoblast differentiation (Fig. 3a). They trigger cell responses mainly via Smads, which play central roles in delivering extracellular signals to the nucleus [22]. Previously reported expression patterns of BMP-2, BMP-4 and BMP-7 all suggest that they are involved in the generation of facial bone [23,24]. Consistent with this idea, BMP-2 and BMP-4 have been shown to be important for mandibular induction [25] and in the formation of other oral and facial structures [26]. BMP signaling leads to the physical interaction of RUNX2 (runt-related transcription factor 2) with Smads, which then act in concert to regulate the transcription of various target genes, leading to the osteoblastic differentiation of mesenchymal progenitor cells [27,28]. The canonical Wnt/β-catenin signaling pathway leads to osteoblast proliferation and bone matrix formation, stabilization and mineralization [29,30]. During these processes, a set of bone-specific genes (e.g. ALP, COL1A1 and BGLAP/osteocalcin) are activated. We found that COL1A1 expression was up-regulated at all three time points tested (Table 2), while ALP was up-regulated on days 4 and 7, and BGLAP was up-regulated on day 7 (Table 5). BGLAP is an osteoblastic differentiation marker first expressed when mineralization begins and is therefore an especially useful marker of the final stages of osteoblastic differentiation. ALP is a surface protein that might participate in the regulation of osteoblastic cell differentiation, proliferation, and migration. Osteoblasts synthesize the organic matrix of bone, or the osteoid, at a rate of 2 µm to 3 µm per day, and they express ALP, which mediates mineralization at a rate of 1 µm to 2 µm per day [31]. A number of studies have also shown the pivotal role played by collagen in modulating cell growth and differentiation. Type I collagen is the predominant component of the newly formed osteoid and serves as the basis for the mineral scaffold. Osteoblasts growing on a collagen-coated titanium alloy Ti6A14V have a higher proliferative capacity and show a greater intracellular expression of osteopontin than osteoblasts growing on uncoated titanium alloy. The type I collagen coating promotes the differentiated phenotype characterized by ALP activity and calcium accumulation, as well as the initial adhesion and growth activities of osteoblasts, which suggest its potential utility as a bone graft material [32,33]. Our RT-PCR and real-time PCR analyses of ALP, COL1A1 and BGLAP expression (Figs. 4 and 5 and Table 8) convinced us that β-TCP stimulated bone formation, and that the results of the microarray and IPA were believable. NF-KB signaling was down-regulated in osteoclasts, which would inhibit the cells' differentiation and, in turn, bone resorption (Fig. 3b). In addition, the RANKL/OPG expression ratio was increased on day 4, decreased on day 7, and unchanged from the control on day 14 (Table 6). The RANKL protein belongs to the TNF super-family and is highly expressed in bone, bone marrow and lymphoid tissues. The predominant role of this cytokine in bone physiology is the stimulation of osteoclastic differentiation/activation and the inhibition of osteoclast apoptosis [34]. OPG acts as a decoy receptor that interferes with RANKL signaling. It also reportedly exerts direct, RANKL-independent inhibitory effects on osteoclast activity, through interactions with still uncharacterized receptors present on osteoclasts. The biological effects of OPG on osteoclasts include inhibition of the terminal stages of osteoclast differentiation, suppression of mature osteoclast activation, and induction of apoptosis [35]. For example, OPG increases bone density in OPG transgenic mice, and recombinant OPG blocks osteoclastogenesis in osteoclast formation assays [36]. OPG-deficient mice develop a skeletal phenotype associated with early-onset osteoporosis [37], while overexpression of OPG in transgenic mice leads to osteopetrosis [36]. Levels of OPG and RANKL are in dynamic balance under normal physiological conditions. We found that the RANKL/OPG ratio was up-regulated on day 4, which suggests that bone resorption is a very early event, occurring in response to a mechanical stress signal; in fact, resorption and formation are always tightly coupled [38]. On the other hand, a low RANKL/OPG ratio, such as that seen on day 7, would result in the inhibition of osteoclastogenesis. Changes in the expression of *GM-CSF* and *IFN-\gamma* also have strong regulatory effects on osteoclastogenesis (Fig. 3b). We found that in the β -TCP group, *IFN-\gamma* and *GM-CSF* were down-regulated with respect to the control on day 7, but that *IFN-\gamma* was up-regulated on day 14 (Table 6). Both GM-CSF and IFN- γ are potent inhibitors of Fig. 5. Quantitative RT-PCR (real-time PCR) for target genes. Results were expressed in terms of mRNA copy unit normalized to the expression of GAPDH mRNA. Bars are means \pm standard deviation (SD). *p<0.01; n=3. \square , control; \blacksquare , β -TCP. osteoclast formation. When GM-CSF binds to its receptor, GM-CSFR, which is present in osteoclast progenitors, osteoclast formation is completely inhibited. In contrast, the IFN- γ target molecule is TRAF6 (TNF receptor-associated factor 6), which mediates the suppression of osteoclast formation so that the balance between the actions of RANKL and IFN- γ might regulate osteoclastogenesis [39]. The **Table 7**Primers and annealing temperatures for target genes used in PCR. | Gene | DNA
primer | Sequence | Annealing temperature (°C) | Size
(bp) | | |--------------|---------------|----------------------------|----------------------------|--------------|--| | VCAM-1 | Forward | 5'-tccatcgtggaggaaggtag-3' | 61 | 193 | | | | Reverse | 5'-cagcctggttaatcccttca-3' | | | | | SDF-1 | Forward | 5'-tacagatgtccctgccgatt-3' | 57 | 150 | | | | Reverse | 5'-cttcaatttcgggtcaatgc-3' | | | | | ALP | Forward | 5'-agctcatgcacaacgtcaag-3' | 56 | 176 | | | | Reverse | 5'-gtgcttgtgtctcggtttga-3' | | | | | COL1A1 | Forward | 5'-acagccgcttcacctacagt-3' | 61 | 166 | | | | Reverse | 5'-atatccatgccgaattcctg-3' | | | | | BGLAP | Forward | 5'-ggtccttgccctgctggctg-3' | 57 | 293 | | | | Reverse | 5'-ccgggccatagaagcgctgg-3' | | | | | GAPDH | Forward | 5'-atcaccatcttccaggag-3' | 56 | 318 | | | | Reverse | 5'-atcgactgtggtcatgag-3' | | | | observed down-regulation of both *GM-CSF* and *IFN-\gamma* suggests that their expression induces osteoclast formation on day 7. Chazono et al. reported that multinucleated giant cells (MNGCs) attach to the surface of β -TCP 2 weeks after its implantation, and that some of the MNGCs in contact with β -TCP have ruffled borders, which is characteristic of osteoclasts [40]. They also previously reported that, in a rabbit bone model, numerous TRAP-positive MNGCs were in contact with the surface of β -TCP 2 weeks after implantation, suggesting that cell-based bioresorption of β -TCP is a key early event after implantation [41]. Our finding that levels of *GM-CSF* and *IFN-\gamma* expression are reduced during the same time-frame suggests that the gene expression leading to osteoclast formation occurs earlier than day 14. On the other hand, *IFN-\gamma* was up-regulated on day 14, which is consistent with osteoclastic differentiation and with bone formation and remodeling being a balanced system. The findings presented herein must be evaluated in the context of limitation. Based on the present controls, it is vague to speculate the specific and direct bone response to β -TCP. These findings above could be direct or indirect or a combination of both in effect of β -TCP. To investigate the specific and direct effect of β -TCP to bone healing and remodeling, another experiment, which implant other biomaterials, such as collagen sponge or hydroxyapatite, and compared with implantation of β -TCP, will be performed. We envision that the present results will be used as a guideline for future studies which should be performed before further conclusion are drawn from them. However, the present results are still meaningful and give an indication for extensive clinical treatment with β -TCP. ## **Conclusions** In our study, the comprehensive gene expression profiling-assisted pathway analysis allowed us to identify candidate or potential genes and pathways involved in the early stage of β -TCP implantation. Microarray and IPA technology provides an appealing approach towards generating biological insights from the data and then presenting the findings in a relevant and compelling way. We know that the skeleton is continuously remodeled through the coordinated actions of osteoblasts and osteoclasts [42], and that during the early stages following β -TCP implantation both bone formation and resorption are ongoing, respectively mediated by these two cell types. The present study provides details concerning the role of bone formation, bioresorption, regeneration and healing after the implantation of β -TCP at an early stage. Although this study identified some of the cellular events associated with bone formation and bioresorption following the
implantation of β -TCP, clarification of cell–cell interactions between osteoclasts and osteoblasts, and many other biological events, should be carried out in further research. This study contributes to a better understanding of the molecular mechanisms occurring after the implantation of β -TCP at an early Table 8 Summary of VCAM-1, SDF-1, ALP, COL1A1 and BGLAP gene expressions. | Genes | Time | β-ТСР | Місгоагтау | Real-time PCR | | | | |--------|-------|-------|------------|--------------------------|------|--|--| | | (day) | | (fold) | mRNA copy unit | Fold | | | | VCAM-1 | 4 | _ | 7.0 | 75.67 ± 10.12 | 8.7 | | | | | | + | | $659.47 \pm 27.11^*$ | | | | | | 7 | _ | 1.5 | 526.33 ± 63.52 | 2.2 | | | | | | + | | $1139.65.16 \pm 170.93*$ | | | | | | 14 | _ | 0.6 | 917.33 ± 160.94 | 1.1 | | | | | | + | | 931.81 ± 14.65 | 3 | | | | SDF-1 | 4 | _ | 2.7 | 532.00 ± 21.17 | 4.0 | | | | | | + | | $2154.03 \pm 58.45^*$ | | | | | | 7 | _ | 1.5 | 2470.00 ± 225.90 | 1.7 | | | | | | + | | $4227.33 \pm 106.23^*$ | | | | | | 14 | _ | 3.3 | 519.67 ± 14.57 | 16.9 | | | | | | + | | $8781.39 \pm 501.95^*$ | | | | | ALP | 4 | _ | 3.5 | 126.67 ± 3.79 | 4.0 | | | | | | + | | $511.02 \pm 34.54^*$ | | | | | | 7 | _ | 3.9 | 312.33 ± 14.01 | 18.5 | | | | | | + | | $5780.71 \pm 200.57^*$ | | | | | | 14 | _ | 1.0 | 682.67 ± 11.93 | 0.5 | | | | | | + | | $318.05 \pm 51.90^*$ | | | | | COL1A1 | 4 | - | 3.2 | 27.00 ± 0.00 | 4.8 | | | | | | + | | $130.80 \pm 3.60^*$ | | | | | | 7 | _ | 3.5 | 471.33 ± 4.51 | 6.1 | | | | | | + | | $2853.04 \pm 159.14^*$ | | | | | | 14 | _ | 2.0 | 66.00 ± 2.00 | 2.8 | | | | | | + | | $182.81 \pm 6.22^*$ | | | | | BGLAP | 4 | _ | _ | 23.67 ± 3.06 | 2.1 | | | | | | + | | $50.88 \pm 8.06^*$ | | | | | | 7 | _ | 8.7 | 62.33 ± 3.51 | 38.7 | | | | | | + | | $2413.06 \pm 229.51^*$ | | | | | | 14 | _ | _ | 16.33 ± 1.53 | 12.1 | | | | | | + | | $197.34 \pm 11.96^*$ | | | | β-TCP vs control. *p<0.01, n = 3. stage and the characteristics of β -TCP in bone formation, and to the development of new biomaterials and their clinical use. Supplementary materials related to this article can be found online at doi:10.1016/j.bone.2010.11.019. ## Acknowledgments We would like to thank Ms A. Imaoka and Mr. N. Kuboyama for great technical support, and Ms Y. Li for excellent support and discussion. This study was supported in part by the "Academic Frontier" project for Private Universities: a matching fund subsidy from the Ministry of Education, Culture, Sports, Science and Technology, 2007–2011 and by a Grant-in-aid for Scientific Research from the Japan Society for the Promotion of Science (B21390497, 20390530). ## References - Matsushita N, Terai H, Okada T, Nozaki K, Inoue H, Miyamoto S, et al. Accelerated repair of a bone defect with a synthetic biodegradable bone-inducing implant. J Orthop Sci 2006;11:505-11. - [2] Ozawa M. Experimental study on bone conductivity and absorbability of the pure β-TCP. J Jpn Soc Biomater 1995;13:167–75. - [3] Yoneda M, Terai H, Imai Y, Okada T, Nozaki K, Inoue H, et al. Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing implant. Biomaterials 2005;26:5145–52. - [4] Horch HH, Sader R, Pautke C, Neff A, Deppe H, Kolk A. Synthetic, pure-phase betatricalcium phosphate ceramic granules (Cerasorb) for bone regeneration in the reconstructive surgery of the jaws. Int J Oral Maxillofac Surg 2006;35:708–13. - [5] Brandoff JF, Silber JS, Vaccaro AR. Contemporary alternatives to synthetic bone grafts for spine surgery. Am J Orthop (Belle Mead NJ) 2008;37(8):410–4. - [6] Szabó G, Huys L, Coulthard P, Maiorana C, Garagiola U, Barabás J, et al. A prospective multicenter randomized clinical trial of autogenous bone versus betatricalcium phosphate graft alone for bilateral sinus elevation: histologic and histomorphometric evaluation. Int J Oral Maxillofac Implants 2005;20:371–81. - [7] Wognum S, Lagoa CE, Nagatomi J, Sacks MS, Vodovotz Y. An exploratory pathways analysis of temporal changes induced by spinal cord injury in the rat bladder wall: insights on remodeling and inflammation. PLoS ONE 2009;4(6):e5852. # ARTICLE IN PRESS I. Zhao et al. / Bone xxx (2010) xxx-xxx - 14 - [8] Noordewier MO, Warren PV. Gene expression microarrays and the integration of biological knowledge. Trends Biotechnol 2001;19:412-5. - [9] van Someren EP, Wessels LF, Backer E, Reinders MJ. Genetic network modeling. Pharmacogenomics 2002;3:507–25. - [10] Leung YF, Cavalieri D. Fundamentals of cDNA microarray data analysis. Trends Genet 2003;19:649-59. - [11] Curtis RK, Oresic M, Vidal-Puig A. Pathways to the analysis of microarray data. Trends Biotechnol 2005;23:429–35. - [12] Fischer HP. Towards quantitative biology: integration of biological information to elucidate disease pathways and to guide drug discovery. Biotechnol Annu Rev 2005:11:1–68. - [13] Li CJ, Li RW, Wang YH, Elsasser TH. Pathway analysis identifies perturbation of genetic networks induced by butyrate in a bovine kidney epithelial cell line. Funct Integr Genomics 2007;7:193–205. - [14] Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, et al. A network-based analysis of systemic inflammation in humans. Nature 2005;437:1032–7. - [15] Lagoa CE, Bartels J, Baratt A, Tseng G, Clermont G, Fink MP, et al. The role of initial trauma in the host's response to injury and hemorrhage: insights from a correlation of mathematical simulations and hepatic transcriptomic analysis. Shock 2006:26:592-600. - [16] Yuan H, De Bruijn JD, Li Y, Feng J, Yang Z, De Groot K, Zhang X. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous α-TCP and β-TCP. J Mater Sci Mater Med 2001 Jan;12(1):7–13. - [17] Mori R, Xiong S, Wang Q, Tarabolous C, Shimada H, Panteris E, et al. Gene profiling and pathway analysis of neuroendocrine transdifferentiated prostate cancer cells. Prostate 2009;69:12–23. - [18] Funk PE, Kincade PW, Witte PL. Native associations of early hematopoietic stem cells and stromal cells isolated in bone marrow cell aggregates. Blood 1994;83: - [19] Mendes SC, Robin C, Dzierzak E. Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development 2005;132:1127–36. - [20] Mazo IB, Quackenbush EJ, Lowe JB, von Andrian UH. Total body irradiation causes profound changes in endothelial traffic molecules for hematopoietic progenitor cell recruitment to bone marrow. Blood Jun 1 2002;99(11):4182–91. - [21] Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum Mar 2009;60(3):813–23. - [22] Li X, Cao X. BMP signalling and skeletogenesis. Ann NY Acad Sci 2006;1068:26–40. [23] Francis-West PH, Tatla T, Brickell PM. Expression patterns of the bone morphogenetic protein genes Bmp-4 and Bmp-2 in the developing chick face surgest a role in outgrowth of the primordia. Dev Dvn 1994;201:168–78. - suggest a role in outgrowth of the primordia. Dev Dyn 1994;201:168-78. [24] Wall NA, Hogan BL Expression of bone morphogenetic protein-4 (BMP-4), bone morphogenetic protein-7 (BMP-7), fibroblast growth factor-8 (FGF-8) and sonic hedgehog (SHH) during branchial arch development in the chick. Mech Dev 1995;53:383-92. - [25] Farhadieh RD, Gianoutsos MP, Yu Y, Walsh WR. The role of bone morphogenetic proteins BMP-2 and BMP-4 and their related postreceptor signaling system - (Smads) in distraction osteogenesis of the mandible. J Craniofac Surg 2004;15: 714-8 - [26] Bennett JH, Hunt P, Thorogood P. Bone morphogenetic protein-2 and -4 expression during murine orofacial development. Arch Oral Biol 1995;40:847-54. - [27] Zhang YW, Yasui N, Ito K, Huang G, Fujii M, Hanai J, et al. A RUNX2/PEBP2alpha A/ CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci USA 2000;97:10549-54. - [28] Miyazono K, Maeda S, Imamura T. Coordinate regulation of cell growth and differentiation by TGF-beta superfamily and Runx proteins. Oncogene 2004;23: 4332–7 - [29] Li X, Liu P, Liu W, Maye P, Zhang J, Zhang Y, et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 2005;37: 045-57 - [30] Kubota T, Michigami T, Ozono K. Wnt signaling in bone metabolism. J Bone Miner Metab 2009:27:265–71. - [31] Fernández-Tresguerres-Hernández-Gil I, Alobera-Gracia MA, del-Canto-Pingarrón M, Blanco-Jerez L. Physiological bases of bone regeneration I. Histology and physiology of bone tissue. Med Oral Patol Oral Cir Bucal 2006;11:47–51. - [32] Roehlecke C, Witt M, Kasper M, Schulze E, Wolf C, Hofer A, et al. Synergistic effect of titanium alloy and collagen type I on cell adhesion, proliferation and differentiation of osteoblast-like cells. Cells Tissues Organs 2001;168:178–87. - [33] Bierbaum S, Hempel U, Geissler U, Hanke T, Scharnweber D, Wenzel KW, et al. Modification of Ti6AL4V surfaces using collagen I, III, and fibronectin. II. Influence on osteoblast responses. J Biomed Mater Res A 2003;67:431–8. - [34] Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology 2001;142: 5050-5. - [35] Kwan Tat S, Padrines M, Théoleyre S, Heymann D, Fortun Y. IL-6, RANKL, TNFalpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 2004;15:49–60. - [36] Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309–19. - [37] Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes 1998;12:1260–8. - [38] Krane SM. Identifying genes that regulate bone remodeling as potential therapeutic targets. J Exp
Med 2005;201:841–3. - [39] Udagawa N. The mechanism of osteoclast differentiation from macrophages: possible roles of T lymphocytes in osteoclastogenesis. J Bone Miner Metab 2003;21:337–43. - [40] Chazono M, Tanaka T, Kitasato S, Kikuchi T, Marumo K. Electron microscopic study on bone formation and bioresorption after implantation of beta-tricalcium phosphate in rabbit models. J Orthop Sci 2008;13:550-5. - [41] Chazono M, Tanaka T, Komaki H, Fujii K. Bone formation and bioresorption after implantation of injectable β-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects. J Biomed Mater Res 2004;70:542-9. - [42] Sims NA, Gooi JH. Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol 2008;19:444–51.